Metamath Proof Explorer


Theorem elnp

Description: Membership in positive reals. (Contributed by NM, 16-Feb-1996) (New usage is discouraged.)

Ref Expression
Assertion elnp A𝑷AA𝑸xAyy<𝑸xyAyAx<𝑸y

Proof

Step Hyp Ref Expression
1 elex A𝑷AV
2 pssss A𝑸A𝑸
3 nqex 𝑸V
4 3 ssex A𝑸AV
5 2 4 syl A𝑸AV
6 5 ad2antlr AA𝑸xAyy<𝑸xyAyAx<𝑸yAV
7 psseq2 z=AzA
8 psseq1 z=Az𝑸A𝑸
9 7 8 anbi12d z=Azz𝑸AA𝑸
10 eleq2 z=AyzyA
11 10 imbi2d z=Ay<𝑸xyzy<𝑸xyA
12 11 albidv z=Ayy<𝑸xyzyy<𝑸xyA
13 rexeq z=Ayzx<𝑸yyAx<𝑸y
14 12 13 anbi12d z=Ayy<𝑸xyzyzx<𝑸yyy<𝑸xyAyAx<𝑸y
15 14 raleqbi1dv z=Axzyy<𝑸xyzyzx<𝑸yxAyy<𝑸xyAyAx<𝑸y
16 9 15 anbi12d z=Azz𝑸xzyy<𝑸xyzyzx<𝑸yAA𝑸xAyy<𝑸xyAyAx<𝑸y
17 df-np 𝑷=z|zz𝑸xzyy<𝑸xyzyzx<𝑸y
18 16 17 elab2g AVA𝑷AA𝑸xAyy<𝑸xyAyAx<𝑸y
19 1 6 18 pm5.21nii A𝑷AA𝑸xAyy<𝑸xyAyAx<𝑸y