Metamath Proof Explorer


Theorem elpcliN

Description: Implication of membership in the projective subspace closure function. (Contributed by NM, 13-Sep-2013) (New usage is discouraged.)

Ref Expression
Hypotheses elpcli.s S=PSubSpK
elpcli.c U=PClK
Assertion elpcliN KVXYYSQUXQY

Proof

Step Hyp Ref Expression
1 elpcli.s S=PSubSpK
2 elpcli.c U=PClK
3 simp1 KVXYYSKV
4 simp2 KVXYYSXY
5 eqid AtomsK=AtomsK
6 5 1 psubssat KVYSYAtomsK
7 6 3adant2 KVXYYSYAtomsK
8 4 7 sstrd KVXYYSXAtomsK
9 5 1 2 pclvalN KVXAtomsKUX=zS|Xz
10 3 8 9 syl2anc KVXYYSUX=zS|Xz
11 10 eleq2d KVXYYSQUXQzS|Xz
12 elintrabg QzS|XzQzS|XzzSXzQz
13 12 ibi QzS|XzzSXzQz
14 11 13 syl6bi KVXYYSQUXzSXzQz
15 sseq2 z=YXzXY
16 eleq2 z=YQzQY
17 15 16 imbi12d z=YXzQzXYQY
18 17 rspccv zSXzQzYSXYQY
19 18 com13 XYYSzSXzQzQY
20 19 imp XYYSzSXzQzQY
21 20 3adant1 KVXYYSzSXzQzQY
22 14 21 syld KVXYYSQUXQY
23 22 imp KVXYYSQUXQY