Metamath Proof Explorer


Theorem elprob

Description: The property of being a probability measure. (Contributed by Thierry Arnoux, 8-Dec-2016)

Ref Expression
Assertion elprob PProbPranmeasuresPdomP=1

Proof

Step Hyp Ref Expression
1 id p=Pp=P
2 dmeq p=Pdomp=domP
3 2 unieqd p=Pdomp=domP
4 1 3 fveq12d p=Ppdomp=PdomP
5 4 eqeq1d p=Ppdomp=1PdomP=1
6 df-prob Prob=pranmeasures|pdomp=1
7 5 6 elrab2 PProbPranmeasuresPdomP=1