Metamath Proof Explorer


Theorem elrabiOLD

Description: Obsolete version of elrabi as of 5-Aug-2024. (Contributed by Alexander van der Vekens, 31-Dec-2017) (New usage is discouraged.) (Proof modification is discouraged.)

Ref Expression
Assertion elrabiOLD AxV|φAV

Proof

Step Hyp Ref Expression
1 clelab Ax|xVφxx=AxVφ
2 eleq1 x=AxVAV
3 2 anbi1d x=AxVφAVφ
4 3 simprbda x=AxVφAV
5 4 exlimiv xx=AxVφAV
6 1 5 sylbi Ax|xVφAV
7 df-rab xV|φ=x|xVφ
8 6 7 eleq2s AxV|φAV