Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Peter Mazsa
Relations
elrelscnveq3
Next ⟩
elrelscnveq
Metamath Proof Explorer
Ascii
Unicode
Theorem
elrelscnveq3
Description:
Two ways of saying a relation is symmetric.
(Contributed by
Peter Mazsa
, 22-Aug-2021)
Ref
Expression
Assertion
elrelscnveq3
⊢
R
∈
Rels
→
R
=
R
-1
↔
∀
x
∀
y
x
R
y
→
y
R
x
Proof
Step
Hyp
Ref
Expression
1
eqss
⊢
R
=
R
-1
↔
R
⊆
R
-1
∧
R
-1
⊆
R
2
cnvsym
⊢
R
-1
⊆
R
↔
∀
x
∀
y
x
R
y
→
y
R
x
3
2
biimpi
⊢
R
-1
⊆
R
→
∀
x
∀
y
x
R
y
→
y
R
x
4
3
a1d
⊢
R
-1
⊆
R
→
R
∈
Rels
→
∀
x
∀
y
x
R
y
→
y
R
x
5
4
adantl
⊢
R
⊆
R
-1
∧
R
-1
⊆
R
→
R
∈
Rels
→
∀
x
∀
y
x
R
y
→
y
R
x
6
5
com12
⊢
R
∈
Rels
→
R
⊆
R
-1
∧
R
-1
⊆
R
→
∀
x
∀
y
x
R
y
→
y
R
x
7
elrelsrelim
⊢
R
∈
Rels
→
Rel
⁡
R
8
dfrel2
⊢
Rel
⁡
R
↔
R
-1
-1
=
R
9
7
8
sylib
⊢
R
∈
Rels
→
R
-1
-1
=
R
10
cnvss
⊢
R
-1
⊆
R
→
R
-1
-1
⊆
R
-1
11
sseq1
⊢
R
-1
-1
=
R
→
R
-1
-1
⊆
R
-1
↔
R
⊆
R
-1
12
10
11
syl5ibcom
⊢
R
-1
⊆
R
→
R
-1
-1
=
R
→
R
⊆
R
-1
13
2
12
sylbir
⊢
∀
x
∀
y
x
R
y
→
y
R
x
→
R
-1
-1
=
R
→
R
⊆
R
-1
14
9
13
syl5com
⊢
R
∈
Rels
→
∀
x
∀
y
x
R
y
→
y
R
x
→
R
⊆
R
-1
15
2
biimpri
⊢
∀
x
∀
y
x
R
y
→
y
R
x
→
R
-1
⊆
R
16
14
15
jca2
⊢
R
∈
Rels
→
∀
x
∀
y
x
R
y
→
y
R
x
→
R
⊆
R
-1
∧
R
-1
⊆
R
17
6
16
impbid
⊢
R
∈
Rels
→
R
⊆
R
-1
∧
R
-1
⊆
R
↔
∀
x
∀
y
x
R
y
→
y
R
x
18
1
17
syl5bb
⊢
R
∈
Rels
→
R
=
R
-1
↔
∀
x
∀
y
x
R
y
→
y
R
x