Metamath Proof Explorer


Theorem elrelscnveq3

Description: Two ways of saying a relation is symmetric. (Contributed by Peter Mazsa, 22-Aug-2021)

Ref Expression
Assertion elrelscnveq3 RRelsR=R-1xyxRyyRx

Proof

Step Hyp Ref Expression
1 eqss R=R-1RR-1R-1R
2 cnvsym R-1RxyxRyyRx
3 2 biimpi R-1RxyxRyyRx
4 3 a1d R-1RRRelsxyxRyyRx
5 4 adantl RR-1R-1RRRelsxyxRyyRx
6 5 com12 RRelsRR-1R-1RxyxRyyRx
7 elrelsrelim RRelsRelR
8 dfrel2 RelRR-1-1=R
9 7 8 sylib RRelsR-1-1=R
10 cnvss R-1RR-1-1R-1
11 sseq1 R-1-1=RR-1-1R-1RR-1
12 10 11 syl5ibcom R-1RR-1-1=RRR-1
13 2 12 sylbir xyxRyyRxR-1-1=RRR-1
14 9 13 syl5com RRelsxyxRyyRxRR-1
15 2 biimpri xyxRyyRxR-1R
16 14 15 jca2 RRelsxyxRyyRxRR-1R-1R
17 6 16 impbid RRelsRR-1R-1RxyxRyyRx
18 1 17 bitrid RRelsR=R-1xyxRyyRx