Metamath Proof Explorer


Theorem elringlsm

Description: Membership in a product of two subsets of a ring. (Contributed by Thierry Arnoux, 20-Jan-2024)

Ref Expression
Hypotheses elringlsm.1 B = Base R
elringlsm.2 · ˙ = R
elringlsm.3 G = mulGrp R
elringlsm.4 × ˙ = LSSum G
elringlsm.6 φ E B
elringlsm.7 φ F B
Assertion elringlsm φ Z E × ˙ F x E y F Z = x · ˙ y

Proof

Step Hyp Ref Expression
1 elringlsm.1 B = Base R
2 elringlsm.2 · ˙ = R
3 elringlsm.3 G = mulGrp R
4 elringlsm.4 × ˙ = LSSum G
5 elringlsm.6 φ E B
6 elringlsm.7 φ F B
7 3 fvexi G V
8 3 1 mgpbas B = Base G
9 3 2 mgpplusg · ˙ = + G
10 8 9 4 lsmelvalx G V E B F B Z E × ˙ F x E y F Z = x · ˙ y
11 7 5 6 10 mp3an2i φ Z E × ˙ F x E y F Z = x · ˙ y