Metamath Proof Explorer


Theorem elrnmptg

Description: Membership in the range of a function. (Contributed by NM, 27-Aug-2007) (Revised by Mario Carneiro, 31-Aug-2015)

Ref Expression
Hypothesis rnmpt.1 F=xAB
Assertion elrnmptg xABVCranFxAC=B

Proof

Step Hyp Ref Expression
1 rnmpt.1 F=xAB
2 1 rnmpt ranF=y|xAy=B
3 2 eleq2i CranFCy|xAy=B
4 r19.29 xABVxAC=BxABVC=B
5 eleq1 C=BCVBV
6 5 biimparc BVC=BCV
7 6 elexd BVC=BCV
8 7 rexlimivw xABVC=BCV
9 4 8 syl xABVxAC=BCV
10 9 ex xABVxAC=BCV
11 eqeq1 y=Cy=BC=B
12 11 rexbidv y=CxAy=BxAC=B
13 12 elab3g xAC=BCVCy|xAy=BxAC=B
14 10 13 syl xABVCy|xAy=BxAC=B
15 3 14 bitrid xABVCranFxAC=B