Metamath Proof Explorer


Theorem elrnmptg

Description: Membership in the range of a function. (Contributed by NM, 27-Aug-2007) (Revised by Mario Carneiro, 31-Aug-2015)

Ref Expression
Hypothesis rnmpt.1 F = x A B
Assertion elrnmptg x A B V C ran F x A C = B

Proof

Step Hyp Ref Expression
1 rnmpt.1 F = x A B
2 1 rnmpt ran F = y | x A y = B
3 2 eleq2i C ran F C y | x A y = B
4 r19.29 x A B V x A C = B x A B V C = B
5 eleq1 C = B C V B V
6 5 biimparc B V C = B C V
7 6 elexd B V C = B C V
8 7 rexlimivw x A B V C = B C V
9 4 8 syl x A B V x A C = B C V
10 9 ex x A B V x A C = B C V
11 eqeq1 y = C y = B C = B
12 11 rexbidv y = C x A y = B x A C = B
13 12 elab3g x A C = B C V C y | x A y = B x A C = B
14 10 13 syl x A B V C y | x A y = B x A C = B
15 3 14 bitrid x A B V C ran F x A C = B