Metamath Proof Explorer


Theorem elsetpreimafvbi

Description: An element of the preimage of a function value is an element of the domain of the function with the same value as another element of the preimage. (Contributed by AV, 9-Mar-2024)

Ref Expression
Hypothesis setpreimafvex.p P=z|xAz=F-1Fx
Assertion elsetpreimafvbi FFnASPXSYSYAFY=FX

Proof

Step Hyp Ref Expression
1 setpreimafvex.p P=z|xAz=F-1Fx
2 fniniseg FFnAXF-1FxXAFX=Fx
3 fniniseg FFnAYF-1FxYAFY=Fx
4 eqeq2 Fx=FXFY=FxFY=FX
5 4 anbi2d Fx=FXYAFY=FxYAFY=FX
6 5 eqcoms FX=FxYAFY=FxYAFY=FX
7 3 6 sylan9bb FFnAFX=FxYF-1FxYAFY=FX
8 7 ex FFnAFX=FxYF-1FxYAFY=FX
9 8 adantld FFnAXAFX=FxYF-1FxYAFY=FX
10 2 9 sylbid FFnAXF-1FxYF-1FxYAFY=FX
11 eleq2 S=F-1FxXSXF-1Fx
12 eleq2 S=F-1FxYSYF-1Fx
13 12 bibi1d S=F-1FxYSYAFY=FXYF-1FxYAFY=FX
14 11 13 imbi12d S=F-1FxXSYSYAFY=FXXF-1FxYF-1FxYAFY=FX
15 10 14 imbitrrid S=F-1FxFFnAXSYSYAFY=FX
16 15 rexlimivw xAS=F-1FxFFnAXSYSYAFY=FX
17 1 elsetpreimafv SPxAS=F-1Fx
18 16 17 syl11 FFnASPXSYSYAFY=FX
19 18 3imp FFnASPXSYSYAFY=FX