Metamath Proof Explorer


Theorem elsetpreimafveq

Description: If two preimages of function values contain elements with identical function values, then both preimages are equal. (Contributed by AV, 8-Mar-2024)

Ref Expression
Hypothesis setpreimafvex.p P=z|xAz=F-1Fx
Assertion elsetpreimafveq FFnASPRPXSYRFX=FYS=R

Proof

Step Hyp Ref Expression
1 setpreimafvex.p P=z|xAz=F-1Fx
2 eqeq2 FX=FYFx=FXFx=FY
3 2 rabbidv FX=FYxA|Fx=FX=xA|Fx=FY
4 3 adantl FFnASPRPXSYRFX=FYxA|Fx=FX=xA|Fx=FY
5 id FFnAFFnA
6 simpl SPRPSP
7 simpl XSYRXS
8 5 6 7 3anim123i FFnASPRPXSYRFFnASPXS
9 8 adantr FFnASPRPXSYRFX=FYFFnASPXS
10 1 elsetpreimafvrab FFnASPXSS=xA|Fx=FX
11 9 10 syl FFnASPRPXSYRFX=FYS=xA|Fx=FX
12 simpr SPRPRP
13 simpr XSYRYR
14 5 12 13 3anim123i FFnASPRPXSYRFFnARPYR
15 14 adantr FFnASPRPXSYRFX=FYFFnARPYR
16 1 elsetpreimafvrab FFnARPYRR=xA|Fx=FY
17 15 16 syl FFnASPRPXSYRFX=FYR=xA|Fx=FY
18 4 11 17 3eqtr4d FFnASPRPXSYRFX=FYS=R
19 18 ex FFnASPRPXSYRFX=FYS=R