Metamath Proof Explorer


Theorem elsetpreimafvrab

Description: An element of the preimage of a function value expressed as a restricted class abstraction. (Contributed by AV, 9-Mar-2024)

Ref Expression
Hypothesis setpreimafvex.p P=z|xAz=F-1Fx
Assertion elsetpreimafvrab FFnASPXSS=xA|Fx=FX

Proof

Step Hyp Ref Expression
1 setpreimafvex.p P=z|xAz=F-1Fx
2 1 elsetpreimafvbi FFnASPXSySyAFy=FX
3 fveqeq2 x=yFx=FXFy=FX
4 3 elrab yxA|Fx=FXyAFy=FX
5 2 4 bitr4di FFnASPXSySyxA|Fx=FX
6 5 eqrdv FFnASPXSS=xA|Fx=FX