Metamath Proof Explorer


Theorem eltail

Description: An element of a tail. (Contributed by Jeff Hankins, 25-Nov-2009) (Revised by Mario Carneiro, 24-Nov-2013)

Ref Expression
Hypothesis tailfval.1 X = dom D
Assertion eltail D DirRel A X B C B tail D A A D B

Proof

Step Hyp Ref Expression
1 tailfval.1 X = dom D
2 1 tailval D DirRel A X tail D A = D A
3 2 eleq2d D DirRel A X B tail D A B D A
4 3 3adant3 D DirRel A X B C B tail D A B D A
5 elimasng A X B C B D A A B D
6 df-br A D B A B D
7 5 6 bitr4di A X B C B D A A D B
8 7 3adant1 D DirRel A X B C B D A A D B
9 4 8 bitrd D DirRel A X B C B tail D A A D B