Metamath Proof Explorer


Theorem eluniab

Description: Membership in union of a class abstraction. (Contributed by NM, 11-Aug-1994) (Revised by Mario Carneiro, 14-Nov-2016)

Ref Expression
Assertion eluniab Ax|φxAxφ

Proof

Step Hyp Ref Expression
1 eluni Ax|φyAyyx|φ
2 nfv xAy
3 nfsab1 xyx|φ
4 2 3 nfan xAyyx|φ
5 nfv yAxφ
6 eleq2w y=xAyAx
7 eleq1w y=xyx|φxx|φ
8 abid xx|φφ
9 7 8 bitrdi y=xyx|φφ
10 6 9 anbi12d y=xAyyx|φAxφ
11 4 5 10 cbvexv1 yAyyx|φxAxφ
12 1 11 bitri Ax|φxAxφ