Metamath Proof Explorer


Theorem elwspths2on

Description: A simple path of length 2 between two vertices (in a graph) as length 3 string. (Contributed by Alexander van der Vekens, 9-Mar-2018) (Revised by AV, 12-May-2021) (Proof shortened by AV, 16-Mar-2022)

Ref Expression
Hypothesis elwwlks2on.v V=VtxG
Assertion elwspths2on GUPGraphAVCVWA2WSPathsNOnGCbVW=⟨“AbC”⟩⟨“AbC”⟩A2WSPathsNOnGC

Proof

Step Hyp Ref Expression
1 elwwlks2on.v V=VtxG
2 wspthnon WA2WSPathsNOnGCWA2WWalksNOnGCffASPathsOnGCW
3 2 biimpi WA2WSPathsNOnGCWA2WWalksNOnGCffASPathsOnGCW
4 1 elwwlks2on GUPGraphAVCVWA2WWalksNOnGCbVW=⟨“AbC”⟩ffWalksGWf=2
5 simpl W=⟨“AbC”⟩WA2WSPathsNOnGCW=⟨“AbC”⟩
6 eleq1 W=⟨“AbC”⟩WA2WSPathsNOnGC⟨“AbC”⟩A2WSPathsNOnGC
7 6 biimpa W=⟨“AbC”⟩WA2WSPathsNOnGC⟨“AbC”⟩A2WSPathsNOnGC
8 5 7 jca W=⟨“AbC”⟩WA2WSPathsNOnGCW=⟨“AbC”⟩⟨“AbC”⟩A2WSPathsNOnGC
9 8 ex W=⟨“AbC”⟩WA2WSPathsNOnGCW=⟨“AbC”⟩⟨“AbC”⟩A2WSPathsNOnGC
10 9 adantr W=⟨“AbC”⟩ffWalksGWf=2WA2WSPathsNOnGCW=⟨“AbC”⟩⟨“AbC”⟩A2WSPathsNOnGC
11 10 com12 WA2WSPathsNOnGCW=⟨“AbC”⟩ffWalksGWf=2W=⟨“AbC”⟩⟨“AbC”⟩A2WSPathsNOnGC
12 11 reximdv WA2WSPathsNOnGCbVW=⟨“AbC”⟩ffWalksGWf=2bVW=⟨“AbC”⟩⟨“AbC”⟩A2WSPathsNOnGC
13 12 a1i13 GUPGraphAVCVWA2WSPathsNOnGCffASPathsOnGCWbVW=⟨“AbC”⟩ffWalksGWf=2bVW=⟨“AbC”⟩⟨“AbC”⟩A2WSPathsNOnGC
14 13 com24 GUPGraphAVCVbVW=⟨“AbC”⟩ffWalksGWf=2ffASPathsOnGCWWA2WSPathsNOnGCbVW=⟨“AbC”⟩⟨“AbC”⟩A2WSPathsNOnGC
15 4 14 sylbid GUPGraphAVCVWA2WWalksNOnGCffASPathsOnGCWWA2WSPathsNOnGCbVW=⟨“AbC”⟩⟨“AbC”⟩A2WSPathsNOnGC
16 15 impd GUPGraphAVCVWA2WWalksNOnGCffASPathsOnGCWWA2WSPathsNOnGCbVW=⟨“AbC”⟩⟨“AbC”⟩A2WSPathsNOnGC
17 16 com23 GUPGraphAVCVWA2WSPathsNOnGCWA2WWalksNOnGCffASPathsOnGCWbVW=⟨“AbC”⟩⟨“AbC”⟩A2WSPathsNOnGC
18 3 17 mpdi GUPGraphAVCVWA2WSPathsNOnGCbVW=⟨“AbC”⟩⟨“AbC”⟩A2WSPathsNOnGC
19 6 biimpar W=⟨“AbC”⟩⟨“AbC”⟩A2WSPathsNOnGCWA2WSPathsNOnGC
20 19 a1i GUPGraphAVCVbVW=⟨“AbC”⟩⟨“AbC”⟩A2WSPathsNOnGCWA2WSPathsNOnGC
21 20 rexlimdva GUPGraphAVCVbVW=⟨“AbC”⟩⟨“AbC”⟩A2WSPathsNOnGCWA2WSPathsNOnGC
22 18 21 impbid GUPGraphAVCVWA2WSPathsNOnGCbVW=⟨“AbC”⟩⟨“AbC”⟩A2WSPathsNOnGC