Metamath Proof Explorer


Theorem endmndlem

Description: A diagonal hom-set in a category equipped with the restriction of the composition has a structure of monoid. See also df-mndtc for converting a monoid to a category. Lemma for bj-endmnd . (Contributed by Zhi Wang, 25-Sep-2024)

Ref Expression
Hypotheses endmndlem.b B = Base C
endmndlem.h H = Hom C
endmndlem.o · ˙ = comp C
endmndlem.c φ C Cat
endmndlem.x φ X B
endmndlem.m φ X H X = Base M
endmndlem.p φ X X · ˙ X = + M
Assertion endmndlem φ M Mnd

Proof

Step Hyp Ref Expression
1 endmndlem.b B = Base C
2 endmndlem.h H = Hom C
3 endmndlem.o · ˙ = comp C
4 endmndlem.c φ C Cat
5 endmndlem.x φ X B
6 endmndlem.m φ X H X = Base M
7 endmndlem.p φ X X · ˙ X = + M
8 4 3ad2ant1 φ f X H X g X H X C Cat
9 5 3ad2ant1 φ f X H X g X H X X B
10 simp3 φ f X H X g X H X g X H X
11 simp2 φ f X H X g X H X f X H X
12 1 2 3 8 9 9 9 10 11 catcocl φ f X H X g X H X f X X · ˙ X g X H X
13 4 adantr φ f X H X g X H X k X H X C Cat
14 5 adantr φ f X H X g X H X k X H X X B
15 simpr3 φ f X H X g X H X k X H X k X H X
16 simpr2 φ f X H X g X H X k X H X g X H X
17 simpr1 φ f X H X g X H X k X H X f X H X
18 1 2 3 13 14 14 14 15 16 14 17 catass φ f X H X g X H X k X H X f X X · ˙ X g X X · ˙ X k = f X X · ˙ X g X X · ˙ X k
19 eqid Id C = Id C
20 1 2 19 4 5 catidcl φ Id C X X H X
21 4 adantr φ f X H X C Cat
22 5 adantr φ f X H X X B
23 simpr φ f X H X f X H X
24 1 2 19 21 22 3 22 23 catlid φ f X H X Id C X X X · ˙ X f = f
25 1 2 19 21 22 3 22 23 catrid φ f X H X f X X · ˙ X Id C X = f
26 6 7 12 18 20 24 25 ismndd φ M Mnd