Metamath Proof Explorer


Theorem endofsegidand

Description: Deduction form of endofsegid . (Contributed by Scott Fenton, 15-Oct-2013) (Revised by Mario Carneiro, 19-Apr-2014)

Ref Expression
Hypotheses endofsegidand.1 φ N
endofsegidand.2 φ A 𝔼 N
endofsegidand.3 φ B 𝔼 N
endofsegidand.4 φ C 𝔼 N
endofsegidand.5 φ ψ C Btwn A B
endofsegidand.6 φ ψ A B Cgr A C
Assertion endofsegidand φ ψ B = C

Proof

Step Hyp Ref Expression
1 endofsegidand.1 φ N
2 endofsegidand.2 φ A 𝔼 N
3 endofsegidand.3 φ B 𝔼 N
4 endofsegidand.4 φ C 𝔼 N
5 endofsegidand.5 φ ψ C Btwn A B
6 endofsegidand.6 φ ψ A B Cgr A C
7 endofsegid N A 𝔼 N C 𝔼 N B 𝔼 N C Btwn A B A B Cgr A C B = C
8 1 2 4 3 7 syl13anc φ C Btwn A B A B Cgr A C B = C
9 8 adantr φ ψ C Btwn A B A B Cgr A C B = C
10 5 6 9 mp2and φ ψ B = C