Metamath Proof Explorer


Theorem enege

Description: The negative of an even number is even. (Contributed by AV, 20-Jun-2020)

Ref Expression
Assertion enege AEvenAEven

Proof

Step Hyp Ref Expression
1 znegcl AA
2 1 adantr AA2A
3 znegcl A2A2
4 3 adantl AA2A2
5 zcn AA
6 2cnd A2
7 2ne0 20
8 7 a1i A20
9 5 6 8 3jca AA220
10 9 adantr AA2A220
11 divneg A220A2=A2
12 11 eleq1d A220A2A2
13 10 12 syl AA2A2A2
14 4 13 mpbid AA2A2
15 2 14 jca AA2AA2
16 iseven AEvenAA2
17 iseven AEvenAA2
18 15 16 17 3imtr4i AEvenAEven