Metamath Proof Explorer


Theorem engch

Description: The property of being a GCH-set is a cardinal invariant. (Contributed by Mario Carneiro, 15-May-2015)

Ref Expression
Assertion engch ABAGCHBGCH

Proof

Step Hyp Ref Expression
1 enfi ABAFinBFin
2 sdomen1 ABAxBx
3 pwen AB𝒫A𝒫B
4 sdomen2 𝒫A𝒫Bx𝒫Ax𝒫B
5 3 4 syl ABx𝒫Ax𝒫B
6 2 5 anbi12d ABAxx𝒫ABxx𝒫B
7 6 notbid AB¬Axx𝒫A¬Bxx𝒫B
8 7 albidv ABx¬Axx𝒫Ax¬Bxx𝒫B
9 1 8 orbi12d ABAFinx¬Axx𝒫ABFinx¬Bxx𝒫B
10 relen Rel
11 10 brrelex1i ABAV
12 elgch AVAGCHAFinx¬Axx𝒫A
13 11 12 syl ABAGCHAFinx¬Axx𝒫A
14 10 brrelex2i ABBV
15 elgch BVBGCHBFinx¬Bxx𝒫B
16 14 15 syl ABBGCHBFinx¬Bxx𝒫B
17 9 13 16 3bitr4d ABAGCHBGCH