Description: Under certain conditions, a GCH-set can demonstrate trichotomy of dominance. Lemma for gchac . (Contributed by Mario Carneiro, 15-May-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | gchdomtri | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sdomdom | |
|
2 | 1 | con3i | |
3 | reldom | |
|
4 | 3 | brrelex1i | |
5 | 4 | 3ad2ant3 | |
6 | fidomtri2 | |
|
7 | 5 6 | sylan | |
8 | 2 7 | imbitrrid | |
9 | 8 | orrd | |
10 | simp1 | |
|
11 | 10 | adantr | |
12 | simpr | |
|
13 | djudoml | |
|
14 | 10 5 13 | syl2anc | |
15 | 14 | adantr | |
16 | djulepw | |
|
17 | 16 | 3adant1 | |
18 | 17 | adantr | |
19 | gchor | |
|
20 | 11 12 15 18 19 | syl22anc | |
21 | djudoml | |
|
22 | 5 10 21 | syl2anc | |
23 | djucomen | |
|
24 | 5 10 23 | syl2anc | |
25 | domentr | |
|
26 | 22 24 25 | syl2anc | |
27 | domen2 | |
|
28 | 26 27 | syl5ibrcom | |
29 | 28 | imp | |
30 | 29 | olcd | |
31 | simpl1 | |
|
32 | canth2g | |
|
33 | sdomdom | |
|
34 | 31 32 33 | 3syl | |
35 | simpl2 | |
|
36 | pwen | |
|
37 | 35 36 | syl | |
38 | enen2 | |
|
39 | 38 | adantl | |
40 | 37 39 | mpbird | |
41 | endom | |
|
42 | pwdjudom | |
|
43 | 40 41 42 | 3syl | |
44 | domtr | |
|
45 | 34 43 44 | syl2anc | |
46 | 45 | orcd | |
47 | 30 46 | jaodan | |
48 | 20 47 | syldan | |
49 | 9 48 | pm2.61dan | |