| Step |
Hyp |
Ref |
Expression |
| 1 |
|
canthwdom |
|
| 2 |
|
0ex |
|
| 3 |
|
reldom |
|
| 4 |
3
|
brrelex2i |
|
| 5 |
|
djuexb |
|
| 6 |
4 5
|
sylibr |
|
| 7 |
6
|
simpld |
|
| 8 |
|
xpsnen2g |
|
| 9 |
2 7 8
|
sylancr |
|
| 10 |
|
endom |
|
| 11 |
|
domwdom |
|
| 12 |
|
wdomtr |
|
| 13 |
12
|
expcom |
|
| 14 |
9 10 11 13
|
4syl |
|
| 15 |
1 14
|
mtoi |
|
| 16 |
|
pwdjuen |
|
| 17 |
7 7 16
|
syl2anc |
|
| 18 |
|
domen1 |
|
| 19 |
17 18
|
syl |
|
| 20 |
19
|
ibi |
|
| 21 |
|
df-dju |
|
| 22 |
20 21
|
breqtrdi |
|
| 23 |
|
unxpwdom |
|
| 24 |
22 23
|
syl |
|
| 25 |
24
|
ord |
|
| 26 |
15 25
|
mpd |
|
| 27 |
|
1on |
|
| 28 |
6
|
simprd |
|
| 29 |
|
xpsnen2g |
|
| 30 |
27 28 29
|
sylancr |
|
| 31 |
|
domentr |
|
| 32 |
26 30 31
|
syl2anc |
|