Metamath Proof Explorer


Theorem pwdjudom

Description: A property of dominance over a powerset, and a main lemma for gchac . Similar to Lemma 2.3 of KanamoriPincus p. 420. (Contributed by Mario Carneiro, 15-May-2015)

Ref Expression
Assertion pwdjudom 𝒫A⊔︀AA⊔︀B𝒫AB

Proof

Step Hyp Ref Expression
1 canthwdom ¬𝒫A*A
2 0ex V
3 reldom Rel
4 3 brrelex2i 𝒫A⊔︀AA⊔︀BA⊔︀BV
5 djuexb AVBVA⊔︀BV
6 4 5 sylibr 𝒫A⊔︀AA⊔︀BAVBV
7 6 simpld 𝒫A⊔︀AA⊔︀BAV
8 xpsnen2g VAV×AA
9 2 7 8 sylancr 𝒫A⊔︀AA⊔︀B×AA
10 endom ×AA×AA
11 domwdom ×AA×A*A
12 wdomtr 𝒫A*×A×A*A𝒫A*A
13 12 expcom ×A*A𝒫A*×A𝒫A*A
14 9 10 11 13 4syl 𝒫A⊔︀AA⊔︀B𝒫A*×A𝒫A*A
15 1 14 mtoi 𝒫A⊔︀AA⊔︀B¬𝒫A*×A
16 pwdjuen AVAV𝒫A⊔︀A𝒫A×𝒫A
17 7 7 16 syl2anc 𝒫A⊔︀AA⊔︀B𝒫A⊔︀A𝒫A×𝒫A
18 domen1 𝒫A⊔︀A𝒫A×𝒫A𝒫A⊔︀AA⊔︀B𝒫A×𝒫AA⊔︀B
19 17 18 syl 𝒫A⊔︀AA⊔︀B𝒫A⊔︀AA⊔︀B𝒫A×𝒫AA⊔︀B
20 19 ibi 𝒫A⊔︀AA⊔︀B𝒫A×𝒫AA⊔︀B
21 df-dju A⊔︀B=×A1𝑜×B
22 20 21 breqtrdi 𝒫A⊔︀AA⊔︀B𝒫A×𝒫A×A1𝑜×B
23 unxpwdom 𝒫A×𝒫A×A1𝑜×B𝒫A*×A𝒫A1𝑜×B
24 22 23 syl 𝒫A⊔︀AA⊔︀B𝒫A*×A𝒫A1𝑜×B
25 24 ord 𝒫A⊔︀AA⊔︀B¬𝒫A*×A𝒫A1𝑜×B
26 15 25 mpd 𝒫A⊔︀AA⊔︀B𝒫A1𝑜×B
27 1on 1𝑜On
28 6 simprd 𝒫A⊔︀AA⊔︀BBV
29 xpsnen2g 1𝑜OnBV1𝑜×BB
30 27 28 29 sylancr 𝒫A⊔︀AA⊔︀B1𝑜×BB
31 domentr 𝒫A1𝑜×B1𝑜×BB𝒫AB
32 26 30 31 syl2anc 𝒫A⊔︀AA⊔︀B𝒫AB