Description: A property of dominance over a powerset, and a main lemma for gchac . Similar to Lemma 2.3 of KanamoriPincus p. 420. (Contributed by Mario Carneiro, 15-May-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | pwdjudom | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | canthwdom | |
|
2 | 0ex | |
|
3 | reldom | |
|
4 | 3 | brrelex2i | |
5 | djuexb | |
|
6 | 4 5 | sylibr | |
7 | 6 | simpld | |
8 | xpsnen2g | |
|
9 | 2 7 8 | sylancr | |
10 | endom | |
|
11 | domwdom | |
|
12 | wdomtr | |
|
13 | 12 | expcom | |
14 | 9 10 11 13 | 4syl | |
15 | 1 14 | mtoi | |
16 | pwdjuen | |
|
17 | 7 7 16 | syl2anc | |
18 | domen1 | |
|
19 | 17 18 | syl | |
20 | 19 | ibi | |
21 | df-dju | |
|
22 | 20 21 | breqtrdi | |
23 | unxpwdom | |
|
24 | 22 23 | syl | |
25 | 24 | ord | |
26 | 15 25 | mpd | |
27 | 1on | |
|
28 | 6 | simprd | |
29 | xpsnen2g | |
|
30 | 27 28 29 | sylancr | |
31 | domentr | |
|
32 | 26 30 31 | syl2anc | |