Metamath Proof Explorer


Theorem enpr2dOLD

Description: Obsolete version of enpr2d as of 23-Dec-2024. (Contributed by Rohan Ridenour, 3-Aug-2023) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses enpr2dOLD.1 φAC
enpr2dOLD.2 φBD
enpr2dOLD.3 φ¬A=B
Assertion enpr2dOLD φAB2𝑜

Proof

Step Hyp Ref Expression
1 enpr2dOLD.1 φAC
2 enpr2dOLD.2 φBD
3 enpr2dOLD.3 φ¬A=B
4 ensn1g ACA1𝑜
5 1 4 syl φA1𝑜
6 1on 1𝑜On
7 en2sn BD1𝑜OnB1𝑜
8 2 6 7 sylancl φB1𝑜
9 3 neqned φAB
10 disjsn2 ABAB=
11 9 10 syl φAB=
12 6 onirri ¬1𝑜1𝑜
13 12 a1i φ¬1𝑜1𝑜
14 disjsn 1𝑜1𝑜=¬1𝑜1𝑜
15 13 14 sylibr φ1𝑜1𝑜=
16 unen A1𝑜B1𝑜AB=1𝑜1𝑜=AB1𝑜1𝑜
17 5 8 11 15 16 syl22anc φAB1𝑜1𝑜
18 df-pr AB=AB
19 df-suc suc1𝑜=1𝑜1𝑜
20 17 18 19 3brtr4g φABsuc1𝑜
21 df-2o 2𝑜=suc1𝑜
22 20 21 breqtrrdi φAB2𝑜