Metamath Proof Explorer


Theorem enqer

Description: The equivalence relation for positive fractions is an equivalence relation. Proposition 9-2.1 of Gleason p. 117. (Contributed by NM, 27-Aug-1995) (Revised by Mario Carneiro, 6-Jul-2015) (New usage is discouraged.)

Ref Expression
Assertion enqer ~𝑸Er𝑵×𝑵

Proof

Step Hyp Ref Expression
1 df-enq ~𝑸=xy|x𝑵×𝑵y𝑵×𝑵zwvux=zwy=vuz𝑵u=w𝑵v
2 mulcompi x𝑵y=y𝑵x
3 mulclpi x𝑵y𝑵x𝑵y𝑵
4 mulasspi x𝑵y𝑵z=x𝑵y𝑵z
5 mulcanpi x𝑵y𝑵x𝑵y=x𝑵zy=z
6 5 biimpd x𝑵y𝑵x𝑵y=x𝑵zy=z
7 1 2 3 4 6 ecopover ~𝑸Er𝑵×𝑵