Description: The set of all possible relations between two sets is equinumerous to the set of all mappings from one set to the powerset of the other. See rfovf1od for a demonstration of a natural one-to-one onto mapping. (Contributed by RP, 27-Apr-2021)
Ref | Expression | ||
---|---|---|---|
Assertion | enrelmap | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xpcomeng | |
|
2 | pwen | |
|
3 | 1 2 | syl | |
4 | xpexg | |
|
5 | 4 | ancoms | |
6 | pw2eng | |
|
7 | 5 6 | syl | |
8 | entr | |
|
9 | 3 7 8 | syl2anc | |
10 | pw2eng | |
|
11 | enrefg | |
|
12 | mapen | |
|
13 | 10 11 12 | syl2anr | |
14 | 2on | |
|
15 | simpr | |
|
16 | simpl | |
|
17 | mapxpen | |
|
18 | 14 15 16 17 | mp3an2i | |
19 | entr | |
|
20 | 13 18 19 | syl2anc | |
21 | 20 | ensymd | |
22 | entr | |
|
23 | 9 21 22 | syl2anc | |