Metamath Proof Explorer


Theorem enrelmap

Description: The set of all possible relations between two sets is equinumerous to the set of all mappings from one set to the powerset of the other. See rfovf1od for a demonstration of a natural one-to-one onto mapping. (Contributed by RP, 27-Apr-2021)

Ref Expression
Assertion enrelmap AVBW𝒫A×B𝒫BA

Proof

Step Hyp Ref Expression
1 xpcomeng AVBWA×BB×A
2 pwen A×BB×A𝒫A×B𝒫B×A
3 1 2 syl AVBW𝒫A×B𝒫B×A
4 xpexg BWAVB×AV
5 4 ancoms AVBWB×AV
6 pw2eng B×AV𝒫B×A2𝑜B×A
7 5 6 syl AVBW𝒫B×A2𝑜B×A
8 entr 𝒫A×B𝒫B×A𝒫B×A2𝑜B×A𝒫A×B2𝑜B×A
9 3 7 8 syl2anc AVBW𝒫A×B2𝑜B×A
10 pw2eng BW𝒫B2𝑜B
11 enrefg AVAA
12 mapen 𝒫B2𝑜BAA𝒫BA2𝑜BA
13 10 11 12 syl2anr AVBW𝒫BA2𝑜BA
14 2on 2𝑜On
15 simpr AVBWBW
16 simpl AVBWAV
17 mapxpen 2𝑜OnBWAV2𝑜BA2𝑜B×A
18 14 15 16 17 mp3an2i AVBW2𝑜BA2𝑜B×A
19 entr 𝒫BA2𝑜BA2𝑜BA2𝑜B×A𝒫BA2𝑜B×A
20 13 18 19 syl2anc AVBW𝒫BA2𝑜B×A
21 20 ensymd AVBW2𝑜B×A𝒫BA
22 entr 𝒫A×B2𝑜B×A2𝑜B×A𝒫BA𝒫A×B𝒫BA
23 9 21 22 syl2anc AVBW𝒫A×B𝒫BA