Metamath Proof Explorer


Theorem epelg

Description: The membership relation and the membership predicate agree when the "containing" class is a set. General version of epel and closed form of epeli . Definition 1.6 of Schloeder p. 1. (Contributed by Scott Fenton, 27-Mar-2011) (Revised by Mario Carneiro, 28-Apr-2015) (Proof shortened by BJ, 14-Jul-2023)

Ref Expression
Assertion epelg BVAEBAB

Proof

Step Hyp Ref Expression
1 df-br AEBABE
2 0nelopab ¬xy|xy
3 df-eprel E=xy|xy
4 3 eqcomi xy|xy=E
5 4 eleq2i xy|xyE
6 2 5 mtbi ¬E
7 eleq1 AB=ABEE
8 6 7 mtbiri AB=¬ABE
9 8 con2i ABE¬AB=
10 opprc1 ¬AVAB=
11 9 10 nsyl2 ABEAV
12 1 11 sylbi AEBAV
13 12 a1i BVAEBAV
14 elex ABAV
15 14 a1i BVABAV
16 eleq12 x=Ay=BxyAB
17 16 3 brabga AVBVAEBAB
18 17 expcom BVAVAEBAB
19 13 15 18 pm5.21ndd BVAEBAB