Metamath Proof Explorer


Theorem epii

Description: Property of an epimorphism. (Contributed by Mario Carneiro, 3-Jan-2017)

Ref Expression
Hypotheses isepi.b B = Base C
isepi.h H = Hom C
isepi.o · ˙ = comp C
isepi.e E = Epi C
isepi.c φ C Cat
isepi.x φ X B
isepi.y φ Y B
epii.z φ Z B
epii.f φ F X E Y
epii.g φ G Y H Z
epii.k φ K Y H Z
Assertion epii φ G X Y · ˙ Z F = K X Y · ˙ Z F G = K

Proof

Step Hyp Ref Expression
1 isepi.b B = Base C
2 isepi.h H = Hom C
3 isepi.o · ˙ = comp C
4 isepi.e E = Epi C
5 isepi.c φ C Cat
6 isepi.x φ X B
7 isepi.y φ Y B
8 epii.z φ Z B
9 epii.f φ F X E Y
10 epii.g φ G Y H Z
11 epii.k φ K Y H Z
12 eqid oppCat C = oppCat C
13 1 3 12 8 7 6 oppcco φ F Z Y comp oppCat C X G = G X Y · ˙ Z F
14 1 3 12 8 7 6 oppcco φ F Z Y comp oppCat C X K = K X Y · ˙ Z F
15 13 14 eqeq12d φ F Z Y comp oppCat C X G = F Z Y comp oppCat C X K G X Y · ˙ Z F = K X Y · ˙ Z F
16 12 1 oppcbas B = Base oppCat C
17 eqid Hom oppCat C = Hom oppCat C
18 eqid comp oppCat C = comp oppCat C
19 eqid Mono oppCat C = Mono oppCat C
20 12 oppccat C Cat oppCat C Cat
21 5 20 syl φ oppCat C Cat
22 12 5 19 4 oppcmon φ Y Mono oppCat C X = X E Y
23 9 22 eleqtrrd φ F Y Mono oppCat C X
24 2 12 oppchom Z Hom oppCat C Y = Y H Z
25 10 24 eleqtrrdi φ G Z Hom oppCat C Y
26 11 24 eleqtrrdi φ K Z Hom oppCat C Y
27 16 17 18 19 21 7 6 8 23 25 26 moni φ F Z Y comp oppCat C X G = F Z Y comp oppCat C X K G = K
28 15 27 bitr3d φ G X Y · ˙ Z F = K X Y · ˙ Z F G = K