Description: Deduction that substitutes equal classes into membership. (Contributed by NM, 14-Dec-2004)
Ref | Expression | ||
---|---|---|---|
Hypotheses | eqeltrrd.1 | |
|
eqeltrrd.2 | |
||
Assertion | eqeltrrd | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeltrrd.1 | |
|
2 | eqeltrrd.2 | |
|
3 | 1 | eqcomd | |
4 | 3 2 | eqeltrd | |