Metamath Proof Explorer


Theorem eqeltrrd

Description: Deduction that substitutes equal classes into membership. (Contributed by NM, 14-Dec-2004)

Ref Expression
Hypotheses eqeltrrd.1 φ A = B
eqeltrrd.2 φ A C
Assertion eqeltrrd φ B C

Proof

Step Hyp Ref Expression
1 eqeltrrd.1 φ A = B
2 eqeltrrd.2 φ A C
3 1 eqcomd φ B = A
4 3 2 eqeltrd φ B C