Metamath Proof Explorer


Theorem eqerlem

Description: Lemma for eqer . (Contributed by NM, 17-Mar-2008) (Proof shortened by Mario Carneiro, 6-Dec-2016)

Ref Expression
Hypotheses eqer.1 x = y A = B
eqer.2 R = x y | A = B
Assertion eqerlem z R w z / x A = w / x A

Proof

Step Hyp Ref Expression
1 eqer.1 x = y A = B
2 eqer.2 R = x y | A = B
3 2 brabsb z R w [˙z / x]˙ [˙w / y]˙ A = B
4 nfcsb1v _ x z / x A
5 nfcsb1v _ x w / x A
6 4 5 nfeq x z / x A = w / x A
7 nfv y A = w / x A
8 vex y V
9 8 1 csbie y / x A = B
10 csbeq1 y = w y / x A = w / x A
11 9 10 eqtr3id y = w B = w / x A
12 11 eqeq2d y = w A = B A = w / x A
13 7 12 sbciegf w V [˙w / y]˙ A = B A = w / x A
14 13 elv [˙w / y]˙ A = B A = w / x A
15 csbeq1a x = z A = z / x A
16 15 eqeq1d x = z A = w / x A z / x A = w / x A
17 14 16 bitrid x = z [˙w / y]˙ A = B z / x A = w / x A
18 6 17 sbciegf z V [˙z / x]˙ [˙w / y]˙ A = B z / x A = w / x A
19 18 elv [˙z / x]˙ [˙w / y]˙ A = B z / x A = w / x A
20 3 19 bitri z R w z / x A = w / x A