Metamath Proof Explorer


Theorem eqfvelsetpreimafv

Description: If an element of the domain of the function has the same function value as an element of the preimage of a function value, then it is an element of the same preimage. (Contributed by AV, 9-Mar-2024)

Ref Expression
Hypothesis setpreimafvex.p P=z|xAz=F-1Fx
Assertion eqfvelsetpreimafv FFnASPXSYAFY=FXYS

Proof

Step Hyp Ref Expression
1 setpreimafvex.p P=z|xAz=F-1Fx
2 1 elsetpreimafvbi FFnASPXSYSYAFY=FX
3 2 biimprd FFnASPXSYAFY=FXYS