Metamath Proof Explorer


Theorem eqvreldisj

Description: Equivalence classes do not overlap. In other words, two equivalence classes are either equal or disjoint. Theorem 74 of Suppes p. 83. (Contributed by NM, 15-Jun-2004) (Revised by Mario Carneiro, 9-Jul-2014) (Revised by Peter Mazsa, 2-Jun-2019)

Ref Expression
Assertion eqvreldisj EqvRelRAR=BRARBR=

Proof

Step Hyp Ref Expression
1 neq0 ¬ARBR=xxARBR
2 simpl EqvRelRxARBREqvRelR
3 elinel1 xARBRxAR
4 3 adantl EqvRelRxARBRxAR
5 ecexr xARAV
6 4 5 syl EqvRelRxARBRAV
7 vex xV
8 elecALTV AVxVxARARx
9 6 7 8 sylancl EqvRelRxARBRxARARx
10 4 9 mpbid EqvRelRxARBRARx
11 elinel2 xARBRxBR
12 11 adantl EqvRelRxARBRxBR
13 ecexr xBRBV
14 12 13 syl EqvRelRxARBRBV
15 elecALTV BVxVxBRBRx
16 14 7 15 sylancl EqvRelRxARBRxBRBRx
17 12 16 mpbid EqvRelRxARBRBRx
18 2 10 17 eqvreltr4d EqvRelRxARBRARB
19 2 18 eqvrelthi EqvRelRxARBRAR=BR
20 19 ex EqvRelRxARBRAR=BR
21 20 exlimdv EqvRelRxxARBRAR=BR
22 1 21 biimtrid EqvRelR¬ARBR=AR=BR
23 22 orrd EqvRelRARBR=AR=BR
24 23 orcomd EqvRelRAR=BRARBR=