Description: Equivalence classes do not overlap. In other words, two equivalence classes are either equal or disjoint. Theorem 74 of Suppes p. 83. (Contributed by NM, 15-Jun-2004) (Revised by Mario Carneiro, 9-Jul-2014) (Revised by Peter Mazsa, 2-Jun-2019)
Ref | Expression | ||
---|---|---|---|
Assertion | eqvreldisj | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | neq0 | |
|
2 | simpl | |
|
3 | elinel1 | |
|
4 | 3 | adantl | |
5 | ecexr | |
|
6 | 4 5 | syl | |
7 | vex | |
|
8 | elecALTV | |
|
9 | 6 7 8 | sylancl | |
10 | 4 9 | mpbid | |
11 | elinel2 | |
|
12 | 11 | adantl | |
13 | ecexr | |
|
14 | 12 13 | syl | |
15 | elecALTV | |
|
16 | 14 7 15 | sylancl | |
17 | 12 16 | mpbid | |
18 | 2 10 17 | eqvreltr4d | |
19 | 2 18 | eqvrelthi | |
20 | 19 | ex | |
21 | 20 | exlimdv | |
22 | 1 21 | biimtrid | |
23 | 22 | orrd | |
24 | 23 | orcomd | |