Description: An equivalence relation is reflexive on its field. Compare Theorem 3M of Enderton p. 56. (Contributed by Mario Carneiro, 6-May-2013) (Revised by Mario Carneiro, 12-Aug-2015) (Revised by Peter Mazsa, 2-Jun-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | eqvrelref.1 | |
|
eqvrelref.2 | |
||
Assertion | eqvrelref | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqvrelref.1 | |
|
2 | eqvrelref.2 | |
|
3 | eqvrelrel | |
|
4 | releldmb | |
|
5 | 1 3 4 | 3syl | |
6 | 2 5 | mpbid | |
7 | 1 | adantr | |
8 | simpr | |
|
9 | 7 8 8 | eqvreltr4d | |
10 | 6 9 | exlimddv | |