Metamath Proof Explorer


Theorem eqvrelref

Description: An equivalence relation is reflexive on its field. Compare Theorem 3M of Enderton p. 56. (Contributed by Mario Carneiro, 6-May-2013) (Revised by Mario Carneiro, 12-Aug-2015) (Revised by Peter Mazsa, 2-Jun-2019)

Ref Expression
Hypotheses eqvrelref.1 φEqvRelR
eqvrelref.2 φAdomR
Assertion eqvrelref φARA

Proof

Step Hyp Ref Expression
1 eqvrelref.1 φEqvRelR
2 eqvrelref.2 φAdomR
3 eqvrelrel EqvRelRRelR
4 releldmb RelRAdomRxARx
5 1 3 4 3syl φAdomRxARx
6 2 5 mpbid φxARx
7 1 adantr φARxEqvRelR
8 simpr φARxARx
9 7 8 8 eqvreltr4d φARxARA
10 6 9 exlimddv φARA