Metamath Proof Explorer


Theorem estrchomfval

Description: Set of morphisms ("arrows") of the category of extensible structures (in a universe). (Contributed by AV, 7-Mar-2020)

Ref Expression
Hypotheses estrcbas.c C=ExtStrCatU
estrcbas.u φUV
estrchomfval.h H=HomC
Assertion estrchomfval φH=xU,yUBaseyBasex

Proof

Step Hyp Ref Expression
1 estrcbas.c C=ExtStrCatU
2 estrcbas.u φUV
3 estrchomfval.h H=HomC
4 eqidd φxU,yUBaseyBasex=xU,yUBaseyBasex
5 eqidd φvU×U,zUgBasezBase2ndv,fBase2ndvBase1stvgf=vU×U,zUgBasezBase2ndv,fBase2ndvBase1stvgf
6 1 2 4 5 estrcval φC=BasendxUHomndxxU,yUBaseyBasexcompndxvU×U,zUgBasezBase2ndv,fBase2ndvBase1stvgf
7 catstr BasendxUHomndxxU,yUBaseyBasexcompndxvU×U,zUgBasezBase2ndv,fBase2ndvBase1stvgfStruct115
8 homid Hom=SlotHomndx
9 snsstp2 HomndxxU,yUBaseyBasexBasendxUHomndxxU,yUBaseyBasexcompndxvU×U,zUgBasezBase2ndv,fBase2ndvBase1stvgf
10 mpoexga UVUVxU,yUBaseyBasexV
11 2 2 10 syl2anc φxU,yUBaseyBasexV
12 6 7 8 9 11 3 strfv3 φH=xU,yUBaseyBasex