Metamath Proof Explorer


Theorem estrcval

Description: Value of the category of extensible structures (in a universe). (Contributed by AV, 7-Mar-2020)

Ref Expression
Hypotheses estrcval.c C=ExtStrCatU
estrcval.u φUV
estrcval.h φH=xU,yUBaseyBasex
estrcval.o φ·˙=vU×U,zUgBasezBase2ndv,fBase2ndvBase1stvgf
Assertion estrcval φC=BasendxUHomndxHcompndx·˙

Proof

Step Hyp Ref Expression
1 estrcval.c C=ExtStrCatU
2 estrcval.u φUV
3 estrcval.h φH=xU,yUBaseyBasex
4 estrcval.o φ·˙=vU×U,zUgBasezBase2ndv,fBase2ndvBase1stvgf
5 df-estrc ExtStrCat=uVBasendxuHomndxxu,yuBaseyBasexcompndxvu×u,zugBasezBase2ndv,fBase2ndvBase1stvgf
6 simpr φu=Uu=U
7 6 opeq2d φu=UBasendxu=BasendxU
8 eqidd φu=UBaseyBasex=BaseyBasex
9 6 6 8 mpoeq123dv φu=Uxu,yuBaseyBasex=xU,yUBaseyBasex
10 3 adantr φu=UH=xU,yUBaseyBasex
11 9 10 eqtr4d φu=Uxu,yuBaseyBasex=H
12 11 opeq2d φu=UHomndxxu,yuBaseyBasex=HomndxH
13 6 sqxpeqd φu=Uu×u=U×U
14 eqidd φu=UgBasezBase2ndv,fBase2ndvBase1stvgf=gBasezBase2ndv,fBase2ndvBase1stvgf
15 13 6 14 mpoeq123dv φu=Uvu×u,zugBasezBase2ndv,fBase2ndvBase1stvgf=vU×U,zUgBasezBase2ndv,fBase2ndvBase1stvgf
16 4 adantr φu=U·˙=vU×U,zUgBasezBase2ndv,fBase2ndvBase1stvgf
17 15 16 eqtr4d φu=Uvu×u,zugBasezBase2ndv,fBase2ndvBase1stvgf=·˙
18 17 opeq2d φu=Ucompndxvu×u,zugBasezBase2ndv,fBase2ndvBase1stvgf=compndx·˙
19 7 12 18 tpeq123d φu=UBasendxuHomndxxu,yuBaseyBasexcompndxvu×u,zugBasezBase2ndv,fBase2ndvBase1stvgf=BasendxUHomndxHcompndx·˙
20 2 elexd φUV
21 tpex BasendxUHomndxHcompndx·˙V
22 21 a1i φBasendxUHomndxHcompndx·˙V
23 5 19 20 22 fvmptd2 φExtStrCatU=BasendxUHomndxHcompndx·˙
24 1 23 eqtrid φC=BasendxUHomndxHcompndx·˙