Description: Equality has existential uniqueness (split into 3 cases). (Contributed by NM, 5-Apr-1995) (Proof shortened by Mario Carneiro, 28-Sep-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | eueq3.1 | |
|
eueq3.2 | |
||
eueq3.3 | |
||
eueq3.4 | |
||
Assertion | eueq3 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eueq3.1 | |
|
2 | eueq3.2 | |
|
3 | eueq3.3 | |
|
4 | eueq3.4 | |
|
5 | 1 | eueqi | |
6 | ibar | |
|
7 | pm2.45 | |
|
8 | 4 | imnani | |
9 | 8 | con2i | |
10 | 7 9 | jaoi | |
11 | 10 | con2i | |
12 | 7 | con2i | |
13 | 12 | bianfd | |
14 | 8 | bianfd | |
15 | 13 14 | orbi12d | |
16 | 11 15 | mtbid | |
17 | biorf | |
|
18 | 16 17 | syl | |
19 | 6 18 | bitrd | |
20 | 3orrot | |
|
21 | df-3or | |
|
22 | 20 21 | bitri | |
23 | 19 22 | bitr4di | |
24 | 23 | eubidv | |
25 | 5 24 | mpbii | |
26 | 3 | eueqi | |
27 | ibar | |
|
28 | 8 | adantr | |
29 | pm2.46 | |
|
30 | 29 | adantr | |
31 | 28 30 | jaoi | |
32 | 31 | con2i | |
33 | biorf | |
|
34 | 32 33 | syl | |
35 | 27 34 | bitrd | |
36 | df-3or | |
|
37 | 35 36 | bitr4di | |
38 | 37 | eubidv | |
39 | 26 38 | mpbii | |
40 | 2 | eueqi | |
41 | ibar | |
|
42 | simpl | |
|
43 | simpl | |
|
44 | 42 43 | orim12i | |
45 | biorf | |
|
46 | 44 45 | nsyl5 | |
47 | 41 46 | bitrd | |
48 | 3orcomb | |
|
49 | df-3or | |
|
50 | 48 49 | bitri | |
51 | 47 50 | bitr4di | |
52 | 51 | eubidv | |
53 | 40 52 | mpbii | |
54 | 25 39 53 | ecase3 | |