Metamath Proof Explorer


Theorem eueq3

Description: Equality has existential uniqueness (split into 3 cases). (Contributed by NM, 5-Apr-1995) (Proof shortened by Mario Carneiro, 28-Sep-2015)

Ref Expression
Hypotheses eueq3.1 AV
eueq3.2 BV
eueq3.3 CV
eueq3.4 ¬φψ
Assertion eueq3 ∃!xφx=A¬φψx=Bψx=C

Proof

Step Hyp Ref Expression
1 eueq3.1 AV
2 eueq3.2 BV
3 eueq3.3 CV
4 eueq3.4 ¬φψ
5 1 eueqi ∃!xx=A
6 ibar φx=Aφx=A
7 pm2.45 ¬φψ¬φ
8 4 imnani φ¬ψ
9 8 con2i ψ¬φ
10 7 9 jaoi ¬φψψ¬φ
11 10 con2i φ¬¬φψψ
12 7 con2i φ¬¬φψ
13 12 bianfd φ¬φψ¬φψx=B
14 8 bianfd φψψx=C
15 13 14 orbi12d φ¬φψψ¬φψx=Bψx=C
16 11 15 mtbid φ¬¬φψx=Bψx=C
17 biorf ¬¬φψx=Bψx=Cφx=A¬φψx=Bψx=Cφx=A
18 16 17 syl φφx=A¬φψx=Bψx=Cφx=A
19 6 18 bitrd φx=A¬φψx=Bψx=Cφx=A
20 3orrot φx=A¬φψx=Bψx=C¬φψx=Bψx=Cφx=A
21 df-3or ¬φψx=Bψx=Cφx=A¬φψx=Bψx=Cφx=A
22 20 21 bitri φx=A¬φψx=Bψx=C¬φψx=Bψx=Cφx=A
23 19 22 bitr4di φx=Aφx=A¬φψx=Bψx=C
24 23 eubidv φ∃!xx=A∃!xφx=A¬φψx=Bψx=C
25 5 24 mpbii φ∃!xφx=A¬φψx=Bψx=C
26 3 eueqi ∃!xx=C
27 ibar ψx=Cψx=C
28 8 adantr φx=A¬ψ
29 pm2.46 ¬φψ¬ψ
30 29 adantr ¬φψx=B¬ψ
31 28 30 jaoi φx=A¬φψx=B¬ψ
32 31 con2i ψ¬φx=A¬φψx=B
33 biorf ¬φx=A¬φψx=Bψx=Cφx=A¬φψx=Bψx=C
34 32 33 syl ψψx=Cφx=A¬φψx=Bψx=C
35 27 34 bitrd ψx=Cφx=A¬φψx=Bψx=C
36 df-3or φx=A¬φψx=Bψx=Cφx=A¬φψx=Bψx=C
37 35 36 bitr4di ψx=Cφx=A¬φψx=Bψx=C
38 37 eubidv ψ∃!xx=C∃!xφx=A¬φψx=Bψx=C
39 26 38 mpbii ψ∃!xφx=A¬φψx=Bψx=C
40 2 eueqi ∃!xx=B
41 ibar ¬φψx=B¬φψx=B
42 simpl φx=Aφ
43 simpl ψx=Cψ
44 42 43 orim12i φx=Aψx=Cφψ
45 biorf ¬φx=Aψx=C¬φψx=Bφx=Aψx=C¬φψx=B
46 44 45 nsyl5 ¬φψ¬φψx=Bφx=Aψx=C¬φψx=B
47 41 46 bitrd ¬φψx=Bφx=Aψx=C¬φψx=B
48 3orcomb φx=A¬φψx=Bψx=Cφx=Aψx=C¬φψx=B
49 df-3or φx=Aψx=C¬φψx=Bφx=Aψx=C¬φψx=B
50 48 49 bitri φx=A¬φψx=Bψx=Cφx=Aψx=C¬φψx=B
51 47 50 bitr4di ¬φψx=Bφx=A¬φψx=Bψx=C
52 51 eubidv ¬φψ∃!xx=B∃!xφx=A¬φψx=Bψx=C
53 40 52 mpbii ¬φψ∃!xφx=A¬φψx=Bψx=C
54 25 39 53 ecase3 ∃!xφx=A¬φψx=Bψx=C