Metamath Proof Explorer


Theorem eulerpartlemt0

Description: Lemma for eulerpart . (Contributed by Thierry Arnoux, 19-Sep-2017)

Ref Expression
Hypotheses eulerpart.p P=f0|f-1Finkfkk=N
eulerpart.o O=gP|ng-1¬2n
eulerpart.d D=gP|ngn1
eulerpart.j J=z|¬2z
eulerpart.f F=xJ,y02yx
eulerpart.h H=r𝒫0FinJ|rsuppFin
eulerpart.m M=rHxy|xJyrx
eulerpart.r R=f|f-1Fin
eulerpart.t T=f0|f-1J
Assertion eulerpartlemt0 ATRA0A-1FinA-1J

Proof

Step Hyp Ref Expression
1 eulerpart.p P=f0|f-1Finkfkk=N
2 eulerpart.o O=gP|ng-1¬2n
3 eulerpart.d D=gP|ngn1
4 eulerpart.j J=z|¬2z
5 eulerpart.f F=xJ,y02yx
6 eulerpart.h H=r𝒫0FinJ|rsuppFin
7 eulerpart.m M=rHxy|xJyrx
8 eulerpart.r R=f|f-1Fin
9 eulerpart.t T=f0|f-1J
10 cnveq f=Af-1=A-1
11 10 imaeq1d f=Af-1=A-1
12 11 sseq1d f=Af-1JA-1J
13 12 9 elrab2 ATA0A-1J
14 11 eleq1d f=Af-1FinA-1Fin
15 14 8 elab4g ARAVA-1Fin
16 13 15 anbi12i ATARA0A-1JAVA-1Fin
17 elin ATRATAR
18 elex A0AV
19 18 pm4.71i A0A0AV
20 19 anbi1i A0A-1FinA-1JA0AVA-1FinA-1J
21 3anass A0A-1FinA-1JA0A-1FinA-1J
22 an42 A0A-1JAVA-1FinA0AVA-1FinA-1J
23 20 21 22 3bitr4i A0A-1FinA-1JA0A-1JAVA-1Fin
24 16 17 23 3bitr4i ATRA0A-1FinA-1J