Description: Lemma for eupth2 . (Contributed by Mario Carneiro, 8-Apr-2015)
Ref | Expression | ||
---|---|---|---|
Hypothesis | eupth2lem2.1 | |
|
Assertion | eupth2lem2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eupth2lem2.1 | |
|
2 | eqidd | |
|
3 | 2 | olcd | |
4 | 3 | biantrud | |
5 | eupth2lem1 | |
|
6 | 1 5 | ax-mp | |
7 | 4 6 | bitr4di | |
8 | simpr | |
|
9 | 8 | eleq1d | |
10 | 7 9 | bitrd | |
11 | 10 | necon1bbid | |
12 | simpl | |
|
13 | neeq1 | |
|
14 | 12 13 | syl5ibcom | |
15 | 14 | pm4.71rd | |
16 | eqcom | |
|
17 | ancom | |
|
18 | 15 16 17 | 3bitr4g | |
19 | 12 | neneqd | |
20 | biorf | |
|
21 | 19 20 | syl | |
22 | orcom | |
|
23 | 21 22 | bitrdi | |
24 | 23 | anbi1d | |
25 | 18 24 | bitrd | |
26 | ancom | |
|
27 | 25 26 | bitr4di | |
28 | eupth2lem1 | |
|
29 | 1 28 | ax-mp | |
30 | 8 | eleq1d | |
31 | 29 30 | bitr3id | |
32 | 11 27 31 | 3bitrd | |