Metamath Proof Explorer


Theorem eupth2lem2

Description: Lemma for eupth2 . (Contributed by Mario Carneiro, 8-Apr-2015)

Ref Expression
Hypothesis eupth2lem2.1 BV
Assertion eupth2lem2 BCB=U¬UifA=BABUifA=CAC

Proof

Step Hyp Ref Expression
1 eupth2lem2.1 BV
2 eqidd BCB=UB=B
3 2 olcd BCB=UB=AB=B
4 3 biantrud BCB=UABABB=AB=B
5 eupth2lem1 BVBifA=BABABB=AB=B
6 1 5 ax-mp BifA=BABABB=AB=B
7 4 6 bitr4di BCB=UABBifA=BAB
8 simpr BCB=UB=U
9 8 eleq1d BCB=UBifA=BABUifA=BAB
10 7 9 bitrd BCB=UABUifA=BAB
11 10 necon1bbid BCB=U¬UifA=BABA=B
12 simpl BCB=UBC
13 neeq1 B=ABCAC
14 12 13 syl5ibcom BCB=UB=AAC
15 14 pm4.71rd BCB=UB=AACB=A
16 eqcom A=BB=A
17 ancom B=AACACB=A
18 15 16 17 3bitr4g BCB=UA=BB=AAC
19 12 neneqd BCB=U¬B=C
20 biorf ¬B=CB=AB=CB=A
21 19 20 syl BCB=UB=AB=CB=A
22 orcom B=CB=AB=AB=C
23 21 22 bitrdi BCB=UB=AB=AB=C
24 23 anbi1d BCB=UB=AACB=AB=CAC
25 18 24 bitrd BCB=UA=BB=AB=CAC
26 ancom ACB=AB=CB=AB=CAC
27 25 26 bitr4di BCB=UA=BACB=AB=C
28 eupth2lem1 BVBifA=CACACB=AB=C
29 1 28 ax-mp BifA=CACACB=AB=C
30 8 eleq1d BCB=UBifA=CACUifA=CAC
31 29 30 bitr3id BCB=UACB=AB=CUifA=CAC
32 11 27 31 3bitrd BCB=U¬UifA=BABUifA=CAC