Metamath Proof Explorer


Theorem evl1muld

Description: Polynomial evaluation builder for multiplication of polynomials. (Contributed by Mario Carneiro, 4-Jul-2015)

Ref Expression
Hypotheses evl1addd.q O = eval 1 R
evl1addd.p P = Poly 1 R
evl1addd.b B = Base R
evl1addd.u U = Base P
evl1addd.1 φ R CRing
evl1addd.2 φ Y B
evl1addd.3 φ M U O M Y = V
evl1addd.4 φ N U O N Y = W
evl1muld.t ˙ = P
evl1muld.s · ˙ = R
Assertion evl1muld φ M ˙ N U O M ˙ N Y = V · ˙ W

Proof

Step Hyp Ref Expression
1 evl1addd.q O = eval 1 R
2 evl1addd.p P = Poly 1 R
3 evl1addd.b B = Base R
4 evl1addd.u U = Base P
5 evl1addd.1 φ R CRing
6 evl1addd.2 φ Y B
7 evl1addd.3 φ M U O M Y = V
8 evl1addd.4 φ N U O N Y = W
9 evl1muld.t ˙ = P
10 evl1muld.s · ˙ = R
11 eqid R 𝑠 B = R 𝑠 B
12 1 2 11 3 evl1rhm R CRing O P RingHom R 𝑠 B
13 5 12 syl φ O P RingHom R 𝑠 B
14 rhmrcl1 O P RingHom R 𝑠 B P Ring
15 13 14 syl φ P Ring
16 7 simpld φ M U
17 8 simpld φ N U
18 4 9 ringcl P Ring M U N U M ˙ N U
19 15 16 17 18 syl3anc φ M ˙ N U
20 eqid R 𝑠 B = R 𝑠 B
21 4 9 20 rhmmul O P RingHom R 𝑠 B M U N U O M ˙ N = O M R 𝑠 B O N
22 13 16 17 21 syl3anc φ O M ˙ N = O M R 𝑠 B O N
23 eqid Base R 𝑠 B = Base R 𝑠 B
24 3 fvexi B V
25 24 a1i φ B V
26 4 23 rhmf O P RingHom R 𝑠 B O : U Base R 𝑠 B
27 13 26 syl φ O : U Base R 𝑠 B
28 27 16 ffvelrnd φ O M Base R 𝑠 B
29 27 17 ffvelrnd φ O N Base R 𝑠 B
30 11 23 5 25 28 29 10 20 pwsmulrval φ O M R 𝑠 B O N = O M · ˙ f O N
31 22 30 eqtrd φ O M ˙ N = O M · ˙ f O N
32 31 fveq1d φ O M ˙ N Y = O M · ˙ f O N Y
33 11 3 23 5 25 28 pwselbas φ O M : B B
34 33 ffnd φ O M Fn B
35 11 3 23 5 25 29 pwselbas φ O N : B B
36 35 ffnd φ O N Fn B
37 fnfvof O M Fn B O N Fn B B V Y B O M · ˙ f O N Y = O M Y · ˙ O N Y
38 34 36 25 6 37 syl22anc φ O M · ˙ f O N Y = O M Y · ˙ O N Y
39 7 simprd φ O M Y = V
40 8 simprd φ O N Y = W
41 39 40 oveq12d φ O M Y · ˙ O N Y = V · ˙ W
42 32 38 41 3eqtrd φ O M ˙ N Y = V · ˙ W
43 19 42 jca φ M ˙ N U O M ˙ N Y = V · ˙ W