Metamath Proof Explorer


Theorem evl1vard

Description: Polynomial evaluation builder for the variable. (Contributed by Mario Carneiro, 4-Jul-2015)

Ref Expression
Hypotheses evl1var.q O=eval1R
evl1var.v X=var1R
evl1var.b B=BaseR
evl1vard.p P=Poly1R
evl1vard.u U=BaseP
evl1vard.1 φRCRing
evl1vard.2 φYB
Assertion evl1vard φXUOXY=Y

Proof

Step Hyp Ref Expression
1 evl1var.q O=eval1R
2 evl1var.v X=var1R
3 evl1var.b B=BaseR
4 evl1vard.p P=Poly1R
5 evl1vard.u U=BaseP
6 evl1vard.1 φRCRing
7 evl1vard.2 φYB
8 crngring RCRingRRing
9 2 4 5 vr1cl RRingXU
10 6 8 9 3syl φXU
11 1 2 3 evl1var RCRingOX=IB
12 6 11 syl φOX=IB
13 12 fveq1d φOXY=IBY
14 fvresi YBIBY=Y
15 7 14 syl φIBY=Y
16 13 15 eqtrd φOXY=Y
17 10 16 jca φXUOXY=Y