Metamath Proof Explorer


Theorem evlfval

Description: Value of the evaluation functor. (Contributed by Mario Carneiro, 12-Jan-2017)

Ref Expression
Hypotheses evlfval.e E = C eval F D
evlfval.c φ C Cat
evlfval.d φ D Cat
evlfval.b B = Base C
evlfval.h H = Hom C
evlfval.o · ˙ = comp D
evlfval.n N = C Nat D
Assertion evlfval φ E = f C Func D , x B 1 st f x x C Func D × B , y C Func D × B 1 st x / m 1 st y / n a m N n , g 2 nd x H 2 nd y a 2 nd y 1 st m 2 nd x 1 st m 2 nd y · ˙ 1 st n 2 nd y 2 nd x 2 nd m 2 nd y g

Proof

Step Hyp Ref Expression
1 evlfval.e E = C eval F D
2 evlfval.c φ C Cat
3 evlfval.d φ D Cat
4 evlfval.b B = Base C
5 evlfval.h H = Hom C
6 evlfval.o · ˙ = comp D
7 evlfval.n N = C Nat D
8 df-evlf eval F = c Cat , d Cat f c Func d , x Base c 1 st f x x c Func d × Base c , y c Func d × Base c 1 st x / m 1 st y / n a m c Nat d n , g 2 nd x Hom c 2 nd y a 2 nd y 1 st m 2 nd x 1 st m 2 nd y comp d 1 st n 2 nd y 2 nd x 2 nd m 2 nd y g
9 8 a1i φ eval F = c Cat , d Cat f c Func d , x Base c 1 st f x x c Func d × Base c , y c Func d × Base c 1 st x / m 1 st y / n a m c Nat d n , g 2 nd x Hom c 2 nd y a 2 nd y 1 st m 2 nd x 1 st m 2 nd y comp d 1 st n 2 nd y 2 nd x 2 nd m 2 nd y g
10 simprl φ c = C d = D c = C
11 simprr φ c = C d = D d = D
12 10 11 oveq12d φ c = C d = D c Func d = C Func D
13 10 fveq2d φ c = C d = D Base c = Base C
14 13 4 syl6eqr φ c = C d = D Base c = B
15 eqidd φ c = C d = D 1 st f x = 1 st f x
16 12 14 15 mpoeq123dv φ c = C d = D f c Func d , x Base c 1 st f x = f C Func D , x B 1 st f x
17 12 14 xpeq12d φ c = C d = D c Func d × Base c = C Func D × B
18 10 11 oveq12d φ c = C d = D c Nat d = C Nat D
19 18 7 syl6eqr φ c = C d = D c Nat d = N
20 19 oveqd φ c = C d = D m c Nat d n = m N n
21 10 fveq2d φ c = C d = D Hom c = Hom C
22 21 5 syl6eqr φ c = C d = D Hom c = H
23 22 oveqd φ c = C d = D 2 nd x Hom c 2 nd y = 2 nd x H 2 nd y
24 11 fveq2d φ c = C d = D comp d = comp D
25 24 6 syl6eqr φ c = C d = D comp d = · ˙
26 25 oveqd φ c = C d = D 1 st m 2 nd x 1 st m 2 nd y comp d 1 st n 2 nd y = 1 st m 2 nd x 1 st m 2 nd y · ˙ 1 st n 2 nd y
27 26 oveqd φ c = C d = D a 2 nd y 1 st m 2 nd x 1 st m 2 nd y comp d 1 st n 2 nd y 2 nd x 2 nd m 2 nd y g = a 2 nd y 1 st m 2 nd x 1 st m 2 nd y · ˙ 1 st n 2 nd y 2 nd x 2 nd m 2 nd y g
28 20 23 27 mpoeq123dv φ c = C d = D a m c Nat d n , g 2 nd x Hom c 2 nd y a 2 nd y 1 st m 2 nd x 1 st m 2 nd y comp d 1 st n 2 nd y 2 nd x 2 nd m 2 nd y g = a m N n , g 2 nd x H 2 nd y a 2 nd y 1 st m 2 nd x 1 st m 2 nd y · ˙ 1 st n 2 nd y 2 nd x 2 nd m 2 nd y g
29 28 csbeq2dv φ c = C d = D 1 st y / n a m c Nat d n , g 2 nd x Hom c 2 nd y a 2 nd y 1 st m 2 nd x 1 st m 2 nd y comp d 1 st n 2 nd y 2 nd x 2 nd m 2 nd y g = 1 st y / n a m N n , g 2 nd x H 2 nd y a 2 nd y 1 st m 2 nd x 1 st m 2 nd y · ˙ 1 st n 2 nd y 2 nd x 2 nd m 2 nd y g
30 29 csbeq2dv φ c = C d = D 1 st x / m 1 st y / n a m c Nat d n , g 2 nd x Hom c 2 nd y a 2 nd y 1 st m 2 nd x 1 st m 2 nd y comp d 1 st n 2 nd y 2 nd x 2 nd m 2 nd y g = 1 st x / m 1 st y / n a m N n , g 2 nd x H 2 nd y a 2 nd y 1 st m 2 nd x 1 st m 2 nd y · ˙ 1 st n 2 nd y 2 nd x 2 nd m 2 nd y g
31 17 17 30 mpoeq123dv φ c = C d = D x c Func d × Base c , y c Func d × Base c 1 st x / m 1 st y / n a m c Nat d n , g 2 nd x Hom c 2 nd y a 2 nd y 1 st m 2 nd x 1 st m 2 nd y comp d 1 st n 2 nd y 2 nd x 2 nd m 2 nd y g = x C Func D × B , y C Func D × B 1 st x / m 1 st y / n a m N n , g 2 nd x H 2 nd y a 2 nd y 1 st m 2 nd x 1 st m 2 nd y · ˙ 1 st n 2 nd y 2 nd x 2 nd m 2 nd y g
32 16 31 opeq12d φ c = C d = D f c Func d , x Base c 1 st f x x c Func d × Base c , y c Func d × Base c 1 st x / m 1 st y / n a m c Nat d n , g 2 nd x Hom c 2 nd y a 2 nd y 1 st m 2 nd x 1 st m 2 nd y comp d 1 st n 2 nd y 2 nd x 2 nd m 2 nd y g = f C Func D , x B 1 st f x x C Func D × B , y C Func D × B 1 st x / m 1 st y / n a m N n , g 2 nd x H 2 nd y a 2 nd y 1 st m 2 nd x 1 st m 2 nd y · ˙ 1 st n 2 nd y 2 nd x 2 nd m 2 nd y g
33 opex f C Func D , x B 1 st f x x C Func D × B , y C Func D × B 1 st x / m 1 st y / n a m N n , g 2 nd x H 2 nd y a 2 nd y 1 st m 2 nd x 1 st m 2 nd y · ˙ 1 st n 2 nd y 2 nd x 2 nd m 2 nd y g V
34 33 a1i φ f C Func D , x B 1 st f x x C Func D × B , y C Func D × B 1 st x / m 1 st y / n a m N n , g 2 nd x H 2 nd y a 2 nd y 1 st m 2 nd x 1 st m 2 nd y · ˙ 1 st n 2 nd y 2 nd x 2 nd m 2 nd y g V
35 9 32 2 3 34 ovmpod φ C eval F D = f C Func D , x B 1 st f x x C Func D × B , y C Func D × B 1 st x / m 1 st y / n a m N n , g 2 nd x H 2 nd y a 2 nd y 1 st m 2 nd x 1 st m 2 nd y · ˙ 1 st n 2 nd y 2 nd x 2 nd m 2 nd y g
36 1 35 syl5eq φ E = f C Func D , x B 1 st f x x C Func D × B , y C Func D × B 1 st x / m 1 st y / n a m N n , g 2 nd x H 2 nd y a 2 nd y 1 st m 2 nd x 1 st m 2 nd y · ˙ 1 st n 2 nd y 2 nd x 2 nd m 2 nd y g