Metamath Proof Explorer


Theorem evls1fvcl

Description: Variant of fveval1fvcl for the subring evaluation function evalSub1 (Contributed by Thierry Arnoux, 22-Mar-2025)

Ref Expression
Hypotheses evls1maprhm.q O=RevalSub1S
evls1maprhm.p P=Poly1R𝑠S
evls1maprhm.b B=BaseR
evls1maprhm.u U=BaseP
evls1maprhm.r φRCRing
evls1maprhm.s φSSubRingR
evls1fvcl.1 φYB
evls1fvcl.2 φMU
Assertion evls1fvcl φOMYB

Proof

Step Hyp Ref Expression
1 evls1maprhm.q O=RevalSub1S
2 evls1maprhm.p P=Poly1R𝑠S
3 evls1maprhm.b B=BaseR
4 evls1maprhm.u U=BaseP
5 evls1maprhm.r φRCRing
6 evls1maprhm.s φSSubRingR
7 evls1fvcl.1 φYB
8 evls1fvcl.2 φMU
9 eqid R𝑠S=R𝑠S
10 eqid eval1R=eval1R
11 1 3 2 9 4 10 5 6 ressply1evl φO=eval1RU
12 11 fveq1d φOM=eval1RUM
13 8 fvresd φeval1RUM=eval1RM
14 12 13 eqtrd φOM=eval1RM
15 14 fveq1d φOMY=eval1RMY
16 eqid Poly1R=Poly1R
17 eqid BasePoly1R=BasePoly1R
18 eqid Poly1R𝑠U=Poly1R𝑠U
19 16 9 2 4 6 18 ressply1bas φU=BasePoly1R𝑠U
20 18 17 ressbasss BasePoly1R𝑠UBasePoly1R
21 19 20 eqsstrdi φUBasePoly1R
22 21 8 sseldd φMBasePoly1R
23 10 16 3 17 5 7 22 fveval1fvcl φeval1RMYB
24 15 23 eqeltrd φOMYB