Metamath Proof Explorer


Theorem evls1fvf

Description: The subring evaluation function for a univariate polynomial as a function, with domain and codomain. (Contributed by Thierry Arnoux, 22-Mar-2025)

Ref Expression
Hypotheses evls1fn.o O=RevalSub1S
evls1fn.p P=Poly1R𝑠S
evls1fn.u U=BaseP
evls1fn.1 φRCRing
evls1fn.2 φSSubRingR
evls1fvf.b B=BaseR
evls1fvf.q φQU
Assertion evls1fvf φOQ:BB

Proof

Step Hyp Ref Expression
1 evls1fn.o O=RevalSub1S
2 evls1fn.p P=Poly1R𝑠S
3 evls1fn.u U=BaseP
4 evls1fn.1 φRCRing
5 evls1fn.2 φSSubRingR
6 evls1fvf.b B=BaseR
7 evls1fvf.q φQU
8 eqid R𝑠B=R𝑠B
9 eqid BaseR𝑠B=BaseR𝑠B
10 6 fvexi BV
11 10 a1i φBV
12 eqid R𝑠S=R𝑠S
13 1 6 8 12 2 evls1rhm RCRingSSubRingROPRingHomR𝑠B
14 4 5 13 syl2anc φOPRingHomR𝑠B
15 3 9 rhmf OPRingHomR𝑠BO:UBaseR𝑠B
16 14 15 syl φO:UBaseR𝑠B
17 16 7 ffvelcdmd φOQBaseR𝑠B
18 8 6 9 4 11 17 pwselbas φOQ:BB