Metamath Proof Explorer


Theorem evls1varpw

Description: Univariate polynomial evaluation for subrings maps the exponentiation of a variable to the exponentiation of the evaluated variable. (Contributed by AV, 14-Sep-2019)

Ref Expression
Hypotheses evls1varpw.q Q=SevalSub1R
evls1varpw.u U=S𝑠R
evls1varpw.w W=Poly1U
evls1varpw.g G=mulGrpW
evls1varpw.x X=var1U
evls1varpw.b B=BaseS
evls1varpw.e ×˙=G
evls1varpw.s φSCRing
evls1varpw.r φRSubRingS
evls1varpw.n φN0
Assertion evls1varpw φQN×˙X=NmulGrpS𝑠BQX

Proof

Step Hyp Ref Expression
1 evls1varpw.q Q=SevalSub1R
2 evls1varpw.u U=S𝑠R
3 evls1varpw.w W=Poly1U
4 evls1varpw.g G=mulGrpW
5 evls1varpw.x X=var1U
6 evls1varpw.b B=BaseS
7 evls1varpw.e ×˙=G
8 evls1varpw.s φSCRing
9 evls1varpw.r φRSubRingS
10 evls1varpw.n φN0
11 eqid BaseW=BaseW
12 2 subrgring RSubRingSURing
13 5 3 11 vr1cl URingXBaseW
14 9 12 13 3syl φXBaseW
15 1 2 3 4 6 11 7 8 9 10 14 evls1pw φQN×˙X=NmulGrpS𝑠BQX