Metamath Proof Explorer


Theorem evlvar

Description: Simple polynomial evaluation maps variables to projections. (Contributed by AV, 12-Sep-2019)

Ref Expression
Hypotheses evlvar.q Q=IevalS
evlvar.v V=ImVarS
evlvar.b B=BaseS
evlvar.i φIW
evlvar.s φSCRing
evlvar.x φXI
Assertion evlvar φQVX=gBIgX

Proof

Step Hyp Ref Expression
1 evlvar.q Q=IevalS
2 evlvar.v V=ImVarS
3 evlvar.b B=BaseS
4 evlvar.i φIW
5 evlvar.s φSCRing
6 evlvar.x φXI
7 eqid IevalSubSB=IevalSubSB
8 eqid ImVarS𝑠B=ImVarS𝑠B
9 eqid S𝑠B=S𝑠B
10 crngring SCRingSRing
11 3 subrgid SRingBSubRingS
12 5 10 11 3syl φBSubRingS
13 7 1 8 9 3 4 5 12 6 evlsvarsrng φIevalSubSBImVarS𝑠BX=QImVarS𝑠BX
14 7 8 9 3 4 5 12 6 evlsvar φIevalSubSBImVarS𝑠BX=gBIgX
15 2 4 12 9 subrgmvr φV=ImVarS𝑠B
16 15 fveq1d φVX=ImVarS𝑠BX
17 16 eqcomd φImVarS𝑠BX=VX
18 17 fveq2d φQImVarS𝑠BX=QVX
19 13 14 18 3eqtr3rd φQVX=gBIgX