Metamath Proof Explorer


Theorem ex-dif

Description: Example for df-dif . Example by David A. Wheeler. (Contributed by Mario Carneiro, 6-May-2015)

Ref Expression
Assertion ex-dif 1318=3

Proof

Step Hyp Ref Expression
1 df-pr 13=13
2 1 difeq1i 1318=1318
3 difundir 1318=118318
4 snsspr1 118
5 ssdif0 118118=
6 4 5 mpbi 118=
7 incom 318=183
8 1re 1
9 1lt3 1<3
10 8 9 gtneii 31
11 3re 3
12 3lt8 3<8
13 11 12 ltneii 38
14 10 13 nelpri ¬318
15 disjsn 183=¬318
16 14 15 mpbir 183=
17 7 16 eqtri 318=
18 disj3 318=3=318
19 17 18 mpbi 3=318
20 19 eqcomi 318=3
21 6 20 uneq12i 118318=3
22 uncom 3=3
23 un0 3=3
24 21 22 23 3eqtri 118318=3
25 2 3 24 3eqtri 1318=3