Metamath Proof Explorer


Theorem ex-fpar

Description: Formalized example provided in the comment for fpar . (Contributed by AV, 3-Jan-2024)

Ref Expression
Hypotheses ex-fpar.h H = 1 st V × V -1 F 1 st V × V 2 nd V × V -1 G 2 nd V × V
ex-fpar.a A = 0 +∞
ex-fpar.b B =
ex-fpar.f F = A
ex-fpar.g G = sin B
Assertion ex-fpar X A Y B X + H Y = X + sin Y

Proof

Step Hyp Ref Expression
1 ex-fpar.h H = 1 st V × V -1 F 1 st V × V 2 nd V × V -1 G 2 nd V × V
2 ex-fpar.a A = 0 +∞
3 ex-fpar.b B =
4 ex-fpar.f F = A
5 ex-fpar.g G = sin B
6 df-ov X + H Y = + H X Y
7 sqrtf :
8 ffn : Fn
9 7 8 ax-mp Fn
10 rge0ssre 0 +∞
11 ax-resscn
12 10 11 sstri 0 +∞
13 fnssres Fn 0 +∞ 0 +∞ Fn 0 +∞
14 2 reseq2i A = 0 +∞
15 14 fneq1i A Fn 0 +∞ 0 +∞ Fn 0 +∞
16 13 15 sylibr Fn 0 +∞ A Fn 0 +∞
17 9 12 16 mp2an A Fn 0 +∞
18 id F = A F = A
19 2 a1i F = A A = 0 +∞
20 18 19 fneq12d F = A F Fn A A Fn 0 +∞
21 4 20 ax-mp F Fn A A Fn 0 +∞
22 17 21 mpbir F Fn A
23 sinf sin :
24 ffn sin : sin Fn
25 23 24 ax-mp sin Fn
26 fnssres sin Fn sin Fn
27 3 reseq2i sin B = sin
28 27 fneq1i sin B Fn sin Fn
29 26 28 sylibr sin Fn sin B Fn
30 25 11 29 mp2an sin B Fn
31 id G = sin B G = sin B
32 3 a1i G = sin B B =
33 31 32 fneq12d G = sin B G Fn B sin B Fn
34 5 33 ax-mp G Fn B sin B Fn
35 30 34 mpbir G Fn B
36 1 fpar F Fn A G Fn B H = x A , y B F x G y
37 22 35 36 mp2an H = x A , y B F x G y
38 opex F x G y V
39 37 38 fnmpoi H Fn A × B
40 opelxpi X A Y B X Y A × B
41 fvco2 H Fn A × B X Y A × B + H X Y = + H X Y
42 39 40 41 sylancr X A Y B + H X Y = + H X Y
43 simpl X A Y B X A
44 simpr X A Y B Y B
45 37 43 44 fvproj X A Y B H X Y = F X G Y
46 45 fveq2d X A Y B + H X Y = + F X G Y
47 df-ov F X + G Y = + F X G Y
48 4 fveq1i F X = A X
49 fvres X A A X = X
50 48 49 eqtrid X A F X = X
51 5 fveq1i G Y = sin B Y
52 fvres Y B sin B Y = sin Y
53 51 52 eqtrid Y B G Y = sin Y
54 50 53 oveqan12d X A Y B F X + G Y = X + sin Y
55 47 54 eqtr3id X A Y B + F X G Y = X + sin Y
56 42 46 55 3eqtrd X A Y B + H X Y = X + sin Y
57 6 56 eqtrid X A Y B X + H Y = X + sin Y