Metamath Proof Explorer


Theorem ex-fpar

Description: Formalized example provided in the comment for fpar . (Contributed by AV, 3-Jan-2024)

Ref Expression
Hypotheses ex-fpar.h H=1stV×V-1F1stV×V2ndV×V-1G2ndV×V
ex-fpar.a A=0+∞
ex-fpar.b B=
ex-fpar.f F=A
ex-fpar.g G=sinB
Assertion ex-fpar XAYBX+HY=X+sinY

Proof

Step Hyp Ref Expression
1 ex-fpar.h H=1stV×V-1F1stV×V2ndV×V-1G2ndV×V
2 ex-fpar.a A=0+∞
3 ex-fpar.b B=
4 ex-fpar.f F=A
5 ex-fpar.g G=sinB
6 df-ov X+HY=+HXY
7 sqrtf :
8 ffn :Fn
9 7 8 ax-mp Fn
10 rge0ssre 0+∞
11 ax-resscn
12 10 11 sstri 0+∞
13 fnssres Fn0+∞0+∞Fn0+∞
14 2 reseq2i A=0+∞
15 14 fneq1i AFn0+∞0+∞Fn0+∞
16 13 15 sylibr Fn0+∞AFn0+∞
17 9 12 16 mp2an AFn0+∞
18 id F=AF=A
19 2 a1i F=AA=0+∞
20 18 19 fneq12d F=AFFnAAFn0+∞
21 4 20 ax-mp FFnAAFn0+∞
22 17 21 mpbir FFnA
23 sinf sin:
24 ffn sin:sinFn
25 23 24 ax-mp sinFn
26 fnssres sinFnsinFn
27 3 reseq2i sinB=sin
28 27 fneq1i sinBFnsinFn
29 26 28 sylibr sinFnsinBFn
30 25 11 29 mp2an sinBFn
31 id G=sinBG=sinB
32 3 a1i G=sinBB=
33 31 32 fneq12d G=sinBGFnBsinBFn
34 5 33 ax-mp GFnBsinBFn
35 30 34 mpbir GFnB
36 1 fpar FFnAGFnBH=xA,yBFxGy
37 22 35 36 mp2an H=xA,yBFxGy
38 opex FxGyV
39 37 38 fnmpoi HFnA×B
40 opelxpi XAYBXYA×B
41 fvco2 HFnA×BXYA×B+HXY=+HXY
42 39 40 41 sylancr XAYB+HXY=+HXY
43 simpl XAYBXA
44 simpr XAYBYB
45 37 43 44 fvproj XAYBHXY=FXGY
46 45 fveq2d XAYB+HXY=+FXGY
47 df-ov FX+GY=+FXGY
48 4 fveq1i FX=AX
49 fvres XAAX=X
50 48 49 eqtrid XAFX=X
51 5 fveq1i GY=sinBY
52 fvres YBsinBY=sinY
53 51 52 eqtrid YBGY=sinY
54 50 53 oveqan12d XAYBFX+GY=X+sinY
55 47 54 eqtr3id XAYB+FXGY=X+sinY
56 42 46 55 3eqtrd XAYB+HXY=X+sinY
57 6 56 eqtrid XAYBX+HY=X+sinY