Metamath Proof Explorer


Theorem ex-lcm

Description: Example for df-lcm . (Contributed by AV, 5-Sep-2021)

Ref Expression
Assertion ex-lcm 6lcm9=18

Proof

Step Hyp Ref Expression
1 6nn 6
2 9nn 9
3 1 2 nnmulcli 69
4 3 nncni 69
5 1 nnzi 6
6 2 nnzi 9
7 5 6 pm3.2i 69
8 lcmcl 696lcm90
9 8 nn0cnd 696lcm9
10 7 9 ax-mp 6lcm9
11 neggcd 69-6gcd9=6gcd9
12 7 11 ax-mp -6gcd9=6gcd9
13 12 eqcomi 6gcd9=-6gcd9
14 ex-gcd -6gcd9=3
15 13 14 eqtri 6gcd9=3
16 3cn 3
17 15 16 eqeltri 6gcd9
18 3ne0 30
19 15 18 eqnetri 6gcd90
20 17 19 pm3.2i 6gcd96gcd90
21 1 2 pm3.2i 69
22 lcmgcdnn 696lcm96gcd9=69
23 21 22 mp1i 696lcm96gcd96gcd906lcm96gcd9=69
24 23 eqcomd 696lcm96gcd96gcd9069=6lcm96gcd9
25 divmul3 696lcm96gcd96gcd90696gcd9=6lcm969=6lcm96gcd9
26 24 25 mpbird 696lcm96gcd96gcd90696gcd9=6lcm9
27 26 eqcomd 696lcm96gcd96gcd906lcm9=696gcd9
28 4 10 20 27 mp3an 6lcm9=696gcd9
29 15 oveq2i 696gcd9=693
30 6cn 6
31 9cn 9
32 30 31 16 18 divassi 693=693
33 3t3e9 33=9
34 33 eqcomi 9=33
35 34 oveq1i 93=333
36 16 16 18 divcan3i 333=3
37 35 36 eqtri 93=3
38 37 oveq2i 693=63
39 6t3e18 63=18
40 32 38 39 3eqtri 693=18
41 28 29 40 3eqtri 6lcm9=18