Metamath Proof Explorer


Theorem exopxfr2

Description: Transfer ordered-pair existence from/to single variable existence. (Contributed by NM, 26-Feb-2014)

Ref Expression
Hypothesis exopxfr2.1 x=yzφψ
Assertion exopxfr2 RelAxAφyzyzAψ

Proof

Step Hyp Ref Expression
1 exopxfr2.1 x=yzφψ
2 df-rel RelAAV×V
3 2 biimpi RelAAV×V
4 3 sseld RelAxAxV×V
5 4 adantrd RelAxAφxV×V
6 5 pm4.71rd RelAxAφxV×VxAφ
7 6 rexbidv2 RelAxAφxV×VxAφ
8 eleq1 x=yzxAyzA
9 8 1 anbi12d x=yzxAφyzAψ
10 9 exopxfr xV×VxAφyzyzAψ
11 7 10 bitrdi RelAxAφyzyzAψ