Metamath Proof Explorer


Theorem extvfvv

Description: The "variable extension" function evaluated for converting a given polynomial F by adding a variable with index A . (Contributed by Thierry Arnoux, 25-Jan-2026)

Ref Expression
Hypotheses extvval.d D = h 0 I | finSupp 0 h
extvval.1 0 ˙ = 0 R
extvval.i φ I V
extvval.r φ R W
extvfval.a φ A I
extvfval.j J = I A
extvfval.m M = Base J mPoly R
extvfv.1 φ F M
extvfvv.1 φ X D
Assertion extvfvv Could not format assertion : No typesetting found for |- ( ph -> ( ( ( ( I extendVars R ) ` A ) ` F ) ` X ) = if ( ( X ` A ) = 0 , ( F ` ( X |` J ) ) , .0. ) ) with typecode |-

Proof

Step Hyp Ref Expression
1 extvval.d D = h 0 I | finSupp 0 h
2 extvval.1 0 ˙ = 0 R
3 extvval.i φ I V
4 extvval.r φ R W
5 extvfval.a φ A I
6 extvfval.j J = I A
7 extvfval.m M = Base J mPoly R
8 extvfv.1 φ F M
9 extvfvv.1 φ X D
10 fveq1 x = X x A = X A
11 10 eqeq1d x = X x A = 0 X A = 0
12 reseq1 x = X x J = X J
13 12 fveq2d x = X F x J = F X J
14 11 13 ifbieq1d x = X if x A = 0 F x J 0 ˙ = if X A = 0 F X J 0 ˙
15 1 2 3 4 5 6 7 8 extvfv Could not format ( ph -> ( ( ( I extendVars R ) ` A ) ` F ) = ( x e. D |-> if ( ( x ` A ) = 0 , ( F ` ( x |` J ) ) , .0. ) ) ) : No typesetting found for |- ( ph -> ( ( ( I extendVars R ) ` A ) ` F ) = ( x e. D |-> if ( ( x ` A ) = 0 , ( F ` ( x |` J ) ) , .0. ) ) ) with typecode |-
16 fvexd φ F X J V
17 2 fvexi 0 ˙ V
18 17 a1i φ 0 ˙ V
19 16 18 ifcld φ if X A = 0 F X J 0 ˙ V
20 14 15 9 19 fvmptd4 Could not format ( ph -> ( ( ( ( I extendVars R ) ` A ) ` F ) ` X ) = if ( ( X ` A ) = 0 , ( F ` ( X |` J ) ) , .0. ) ) : No typesetting found for |- ( ph -> ( ( ( ( I extendVars R ) ` A ) ` F ) ` X ) = if ( ( X ` A ) = 0 , ( F ` ( X |` J ) ) , .0. ) ) with typecode |-