Metamath Proof Explorer


Theorem f0cli

Description: Unconditional closure of a function when the codomain includes the empty set. (Contributed by Mario Carneiro, 12-Sep-2013)

Ref Expression
Hypotheses f0cl.1 F:AB
f0cl.2 B
Assertion f0cli FCB

Proof

Step Hyp Ref Expression
1 f0cl.1 F:AB
2 f0cl.2 B
3 1 ffvelcdmi CAFCB
4 1 fdmi domF=A
5 4 eleq2i CdomFCA
6 ndmfv ¬CdomFFC=
7 6 2 eqeltrdi ¬CdomFFCB
8 5 7 sylnbir ¬CAFCB
9 3 8 pm2.61i FCB