Metamath Proof Explorer


Theorem f1cof1

Description: Composition of two one-to-one functions. Generalization of f1co . (Contributed by AV, 18-Sep-2024)

Ref Expression
Assertion f1cof1 F:C1-1DG:A1-1BFG:G-1C1-1D

Proof

Step Hyp Ref Expression
1 df-f1 F:C1-1DF:CDFunF-1
2 df-f1 G:A1-1BG:ABFunG-1
3 ffun G:ABFunG
4 fcof F:CDFunGFG:G-1CD
5 3 4 sylan2 F:CDG:ABFG:G-1CD
6 funco FunG-1FunF-1FunG-1F-1
7 cnvco FG-1=G-1F-1
8 7 funeqi FunFG-1FunG-1F-1
9 6 8 sylibr FunG-1FunF-1FunFG-1
10 9 ancoms FunF-1FunG-1FunFG-1
11 5 10 anim12i F:CDG:ABFunF-1FunG-1FG:G-1CDFunFG-1
12 11 an4s F:CDFunF-1G:ABFunG-1FG:G-1CDFunFG-1
13 1 2 12 syl2anb F:C1-1DG:A1-1BFG:G-1CDFunFG-1
14 df-f1 FG:G-1C1-1DFG:G-1CDFunFG-1
15 13 14 sylibr F:C1-1DG:A1-1BFG:G-1C1-1D