Metamath Proof Explorer


Theorem f1cof1blem

Description: Lemma for f1cof1b and focofob . (Contributed by AV, 18-Sep-2024)

Ref Expression
Hypotheses fcores.f φF:AB
fcores.e E=ranFC
fcores.p P=F-1C
fcores.x X=FP
fcores.g φG:CD
fcores.y Y=GE
f1cof1blem.s φranF=C
Assertion f1cof1blem φP=AE=CX=FY=G

Proof

Step Hyp Ref Expression
1 fcores.f φF:AB
2 fcores.e E=ranFC
3 fcores.p P=F-1C
4 fcores.x X=FP
5 fcores.g φG:CD
6 fcores.y Y=GE
7 f1cof1blem.s φranF=C
8 7 eqcomd φC=ranF
9 8 imaeq2d φF-1C=F-1ranF
10 3 9 eqtrid φP=F-1ranF
11 cnvimarndm F-1ranF=domF
12 1 fdmd φdomF=A
13 11 12 eqtrid φF-1ranF=A
14 10 13 eqtrd φP=A
15 simpr φranF=CranF=C
16 15 ineq1d φranF=CranFC=CC
17 inidm CC=C
18 16 17 eqtrdi φranF=CranFC=C
19 7 18 mpdan φranFC=C
20 2 19 eqtrid φE=C
21 14 20 jca φP=AE=C
22 10 11 eqtrdi φP=domF
23 22 reseq2d φFP=FdomF
24 4 23 eqtrid φX=FdomF
25 1 freld φRelF
26 resdm RelFFdomF=F
27 25 26 syl φFdomF=F
28 24 27 eqtrd φX=F
29 5 fdmd φdomG=C
30 20 29 eqtr4d φE=domG
31 30 reseq2d φGE=GdomG
32 6 31 eqtrid φY=GdomG
33 5 freld φRelG
34 resdm RelGGdomG=G
35 33 34 syl φGdomG=G
36 32 35 eqtrd φY=G
37 21 28 36 jca32 φP=AE=CX=FY=G