Metamath Proof Explorer


Theorem f1cof1blem

Description: Lemma for f1cof1b and focofob . (Contributed by AV, 18-Sep-2024)

Ref Expression
Hypotheses fcores.f φ F : A B
fcores.e E = ran F C
fcores.p P = F -1 C
fcores.x X = F P
fcores.g φ G : C D
fcores.y Y = G E
f1cof1blem.s φ ran F = C
Assertion f1cof1blem φ P = A E = C X = F Y = G

Proof

Step Hyp Ref Expression
1 fcores.f φ F : A B
2 fcores.e E = ran F C
3 fcores.p P = F -1 C
4 fcores.x X = F P
5 fcores.g φ G : C D
6 fcores.y Y = G E
7 f1cof1blem.s φ ran F = C
8 7 eqcomd φ C = ran F
9 8 imaeq2d φ F -1 C = F -1 ran F
10 3 9 eqtrid φ P = F -1 ran F
11 cnvimarndm F -1 ran F = dom F
12 1 fdmd φ dom F = A
13 11 12 eqtrid φ F -1 ran F = A
14 10 13 eqtrd φ P = A
15 simpr φ ran F = C ran F = C
16 15 ineq1d φ ran F = C ran F C = C C
17 inidm C C = C
18 16 17 eqtrdi φ ran F = C ran F C = C
19 7 18 mpdan φ ran F C = C
20 2 19 eqtrid φ E = C
21 14 20 jca φ P = A E = C
22 10 11 eqtrdi φ P = dom F
23 22 reseq2d φ F P = F dom F
24 4 23 eqtrid φ X = F dom F
25 1 freld φ Rel F
26 resdm Rel F F dom F = F
27 25 26 syl φ F dom F = F
28 24 27 eqtrd φ X = F
29 5 fdmd φ dom G = C
30 20 29 eqtr4d φ E = dom G
31 30 reseq2d φ G E = G dom G
32 6 31 eqtrid φ Y = G dom G
33 5 freld φ Rel G
34 resdm Rel G G dom G = G
35 33 34 syl φ G dom G = G
36 32 35 eqtrd φ Y = G
37 21 28 36 jca32 φ P = A E = C X = F Y = G