Metamath Proof Explorer


Theorem f1dmex

Description: If the codomain of a one-to-one function exists, so does its domain. This theorem is equivalent to the Axiom of Replacement ax-rep . (Contributed by NM, 4-Sep-2004)

Ref Expression
Assertion f1dmex F:A1-1BBCAV

Proof

Step Hyp Ref Expression
1 f1f F:A1-1BF:AB
2 1 frnd F:A1-1BranFB
3 ssexg ranFBBCranFV
4 2 3 sylan F:A1-1BBCranFV
5 4 ex F:A1-1BBCranFV
6 f1cnv F:A1-1BF-1:ranF1-1 ontoA
7 f1ofo F-1:ranF1-1 ontoAF-1:ranFontoA
8 6 7 syl F:A1-1BF-1:ranFontoA
9 focdmex ranFVF-1:ranFontoAAV
10 5 8 9 syl6ci F:A1-1BBCAV
11 10 imp F:A1-1BBCAV